This repo is customed for VisDrone.

Overview

Object Detection for VisDrone(无人机航拍图像目标检测)

My environment

1、Windows10 (Linux available)
2、tensorflow >= 1.12.0
3、python3.6 (anaconda)
4、cv2
5、ensemble-boxes(pip install ensemble-boxes)

Datasets(XML format for training set)

(1).Datasets is available on https://github.com/VisDrone/VisDrone-Dataset
(2).Please download xml annotations on Baidu Yun (提取码: ia3f), or Google Drive, and configure it in ./core/config/cfgs.py
(3).You can also use ./data/visdrone2xml.py to generate your visdrone xml files, modify the path information.

training-set format:

├── VisDrone2019-DET-train
│     ├── Annotation(xml format)
│     ├── JPEGImages

Pretrained Models(ResNet50vd, 101vd)

Please download pretrained models on Baidu Yun (提取码: krce), or Google Drive, then put it into ./data/pretrained_weights

Train

Modify the parameters in ./core/config/cfgs.py
python train_step.py

Eval

Modify the parameters in ./core/config/cfgs.py
python eval_visdrone.py, it will get txt format file, then use official matlab tools to eval the final results.
python eval_model_ensemble.py. Before the running of this file, you should set NORMALIZED_RESULTS_FOR_MODEL_ENSEMBLE=True in cfgs.py and then run eval_visdrone.py to get normalized txt result.

Visualization

Modify the parameters in ./core/config/cfgs.py
python image_demo.py, it will get visualized results.

Visualized Result (multi-scale training+multi-scale testing) 1

Test Result(Validation set):

1. ResNet50-vd

Name maxDets Result(s/m)
Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 31.26%/35.1%
Average Precision (AP) @( IoU=0.50 ) maxDets=500 56.44%/60.29%
Average Precision (AP) @( IoU=0.75 ) maxDets=500 30.13%/35.42%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.78%/0.58%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 10 6.62%/6.05%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=100 38.21%/40.99%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=500 48.41%/53%
"s" means single-scale training + single-scale testing; "m"means multi-scale training + multi-scale testing

2. ResNet101-vd

Name maxDets Result(s/m)
Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 31.7%/35.98%
Average Precision (AP) @( IoU=0.50 ) maxDets=500 56.94%/61.64%
Average Precision (AP) @( IoU=0.75 ) maxDets=500 30.59%/36.13%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.67%/0.61%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 10 6.29%/6.13%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=100 38.66%/42.33%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=500 49.29%/53.68%

3. Model Ensemble (ResNet101-vd+ResNet50-vd)

Name maxDets Result
Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 36.76%
Average Precision (AP) @( IoU=0.50 ) maxDets=500 62.33%
Average Precision (AP) @( IoU=0.75 ) maxDets=500 37.41%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.59%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 10 6.06%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=100 42.57%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=500 54.53%
You can download trained weights(ResNet50vd, 101vd) on Baidu Yun (提取码: 9u9m), or Google Drive, then put it into ./saved_weights

Reference

1、https://github.com/DetectionTeamUCAS/Faster-RCNN_Tensorflow
2、https://github.com/open-mmlab/mmdetection
3、https://github.com/ZFTurbo/Weighted-Boxes-Fusion
4、https://github.com/kobiso/CBAM-tensorflow-slim
5、https://github.com/SJTU-Thinklab-Det/DOTA-DOAI
6、https://github.com/Viredery/tf-eager-fasterrcnn
7、https://github.com/VisDrone/VisDrone2018-DET-toolkit
8、https://github.com/YunYang1994/tensorflow-yolov3
9、https://github.com/zhpmatrix/VisDrone2018

Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022