Depth-Aware Video Frame Interpolation (CVPR 2019)

Related tags

Deep LearningDAIN
Overview

DAIN (Depth-Aware Video Frame Interpolation)

Project | Paper

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang

IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CVPR 2019

This work is developed based on our TPAMI work MEMC-Net, where we propose the adaptive warping layer. Please also consider referring to it.

Table of Contents

  1. Introduction
  2. Citation
  3. Requirements and Dependencies
  4. Installation
  5. Testing Pre-trained Models
  6. Downloading Results
  7. Slow-motion Generation
  8. Training New Models
  9. Google Colab Demo

Introduction

We propose the Depth-Aware video frame INterpolation (DAIN) model to explicitly detect the occlusion by exploring the depth cue. We develop a depth-aware flow projection layer to synthesize intermediate flows that preferably sample closer objects than farther ones. Our method achieves state-of-the-art performance on the Middlebury dataset. We provide videos here.

Citation

If you find the code and datasets useful in your research, please cite:

@inproceedings{DAIN,
    author    = {Bao, Wenbo and Lai, Wei-Sheng and Ma, Chao and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan}, 
    title     = {Depth-Aware Video Frame Interpolation}, 
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
    year      = {2019}
}
@article{MEMC-Net,
     title={MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement},
     author={Bao, Wenbo and Lai, Wei-Sheng, and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan},
     journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
     doi={10.1109/TPAMI.2019.2941941},
     year={2018}
}

Requirements and Dependencies

  • Ubuntu (We test with Ubuntu = 16.04.5 LTS)
  • Python (We test with Python = 3.6.8 in Anaconda3 = 4.1.1)
  • Cuda & Cudnn (We test with Cuda = 9.0 and Cudnn = 7.0)
  • PyTorch (The customized depth-aware flow projection and other layers require ATen API in PyTorch = 1.0.0)
  • GCC (Compiling PyTorch 1.0.0 extension files (.c/.cu) requires gcc = 4.9.1 and nvcc = 9.0 compilers)
  • NVIDIA GPU (We use Titan X (Pascal) with compute = 6.1, but we support compute_50/52/60/61 devices, should you have devices with higher compute capability, please revise this)

Installation

Download repository:

$ git clone https://github.com/baowenbo/DAIN.git

Before building Pytorch extensions, be sure you have pytorch >= 1.0.0:

$ python -c "import torch; print(torch.__version__)"

Generate our PyTorch extensions:

$ cd DAIN
$ cd my_package 
$ ./build.sh

Generate the Correlation package required by PWCNet:

$ cd ../PWCNet/correlation_package_pytorch1_0
$ ./build.sh

Testing Pre-trained Models

Make model weights dir and Middlebury dataset dir:

$ cd DAIN
$ mkdir model_weights
$ mkdir MiddleBurySet

Download pretrained models,

$ cd model_weights
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best.pth

and Middlebury dataset:

$ cd ../MiddleBurySet
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-color-allframes.zip
$ unzip other-color-allframes.zip
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-gt-interp.zip
$ unzip other-gt-interp.zip
$ cd ..

preinstallations:

$ cd PWCNet/correlation_package_pytorch1_0
$ sh build.sh
$ cd ../my_package
$ sh build.sh
$ cd ..

We are good to go by:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py

The interpolated results are under MiddleBurySet/other-result-author/[random number]/, where the random number is used to distinguish different runnings.

Downloading Results

Our DAIN model achieves the state-of-the-art performance on the UCF101, Vimeo90K, and Middlebury (eval and other). Download our interpolated results with:

$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/UCF101_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Vimeo90K_interp_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_eval_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_other_DAIN.zip

Slow-motion Generation

Our model is fully capable of generating slow-motion effect with minor modification on the network architecture. Run the following code by specifying time_step = 0.25 to generate x4 slow-motion effect:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.25

or set time_step to 0.125 or 0.1 as follows

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.125
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.1

to generate x8 and x10 slow-motion respectively. Or if you would like to have x100 slow-motion for a little fun.

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.01

You may also want to create gif animations by:

$ cd MiddleBurySet/other-result-author/[random number]/Beanbags
$ convert -delay 1 *.png -loop 0 Beanbags.gif //1*10ms delay 

Have fun and enjoy yourself!

Training New Models

Download the Vimeo90K triplet dataset for video frame interpolation task, also see here by Xue et al., IJCV19.

$ cd DAIN
$ mkdir /path/to/your/dataset & cd /path/to/your/dataset 
$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Download the pretrained MegaDepth and PWCNet models

$ cd MegaDepth/checkpoints/test_local
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best_generalization_net_G.pth
$ cd ../../../PWCNet
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/pwc_net.pth.tar
$ cd  ..

Run the training script:

$ CUDA_VISIBLE_DEVICES=0 python train.py --datasetPath /path/to/your/dataset --batch_size 1 --save_which 1 --lr 0.0005 --rectify_lr 0.0005 --flow_lr_coe 0.01 --occ_lr_coe 0.0 --filter_lr_coe 1.0 --ctx_lr_coe 1.0 --alpha 0.0 1.0 --patience 4 --factor 0.2

The optimized models will be saved to the model_weights/[random number] directory, where [random number] is generated for different runs.

Replace the pre-trained model_weights/best.pth model with the newly trained model_weights/[random number]/best.pth model. Then test the new model by executing:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py

Google Colab Demo

This is a modification of DAIN that allows the usage of Google Colab and is able to do a full demo interpolation from a source video to a target video.

Original Notebook File by btahir can be found here.

To use the Colab, follow these steps:

  • Download the Colab_DAIN.ipynb file (link).
  • Visit Google Colaboratory (link)
  • Select the "Upload" option, and upload the .ipynb file
  • Start running the cells one by one, following the instructions.

Colab file authors: Styler00Dollar and Alpha.

Contact

Wenbo Bao; Wei-Sheng (Jason) Lai

License

See MIT License

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023