PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Overview

Saiency Map-aided GAN for RAW2RGB Mapping

The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping.

1 Implementations

Before running it, please ensure the environment is Python 3.6 and PyTorch 1.0.1.

1.1 Train

If you train it from scratch, please download the saliency map generated by our pre-trained SalGAN.

Stage 1:

python train.py     --in_root [the path of TrainingPhoneRaw]
		    --out_root [the path of TrainingCanonRGB]
		    --sal_root [the path of TrainingCanonRGB_saliency]

Stage 2:

python train.py     --epochs 30
                    --lr_g 0.0001
                    --in_root [the path of TrainingPhoneRaw]
                    --out_root [the path of TrainingCanonRGB]
                    --sal_root [the path of TrainingCanonRGB_saliency]
if you have more than one GPU, please change following codes:
python train.py     --multi_gpu True
                    --gpu_ids [the ids of your multi-GPUs]

The training pairs are normalized to (H/2) * (W/2) * 4 from H * W * 1 in order to save as .png format. The 4 channels represent R, G, B, G, respectively. You may check the original Bayer Pattern:

The training pairs are shown like this:

Our system architecture is shown as:

1.2 Test

At testing phase, please create a folder first if the folder is not exist.

Please download the pre-trained model first.

For small image patches:

python test.py 	    --netroot 'zyz987.pth' (please ensure the pre-trained model is in same path)
		    --baseroot [the path of TestingPhoneRaw]
		    --saveroot [the path that all the generated images will be saved to]

For full resolution images:

python test_full_res.py
or python test_full_res2.py
--netroot 'zyz987.pth' (please ensure the pre-trained model is in same path)
--baseroot [the path of FullResTestingPhoneRaw]
--saveroot [the path that all the generated images will be saved to]

Some randomly selected patches are shown as:

2 Comparison with Pix2Pix

We have trained a Pix2Pix framework using same settings.

Because both systems are trained only with L1 loss at first stage, the generated samples are obviously more blurry than second stage. There is artifact in the images produced by Pix2Pix due to Batch Normalization. Moreover, we show the results produced by proposed architecture trained only with L1 loss for 40 epochs. Note that, our proposed system are optimized by whole objectives for last 30 epochs. It demonstrates that adversarial training and perceptual loss indeed enhance visual quality.

3 Full resolution results

Because the memory is not enough for generate a high resolution image, we alternatively generate patch-by-patch.

4 Poster

5 Related Work

The privious phone photo enhancers:

  • Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile devices with deep convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 3277–3285, 2017.

  • Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Wespe: weakly supervised photo enhancer for digital cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 691–700, 2018.

The conditional image generation:

  • Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1125– 1134, 2017.

  • Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycleconsistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 2223– 2232, 2017.

6 Reference

If you have any question, please do not hesitate to contact [email protected]

If you find this code useful to your research, please consider citing:

@inproceedings{zhao2019saliency,
  title={Saliency map-aided generative adversarial network for raw to rgb mapping},
  author={Zhao, Yuzhi and Po, Lai-Man and Zhang, Tiantian and Liao, Zongbang and Shi, Xiang and others},
  booktitle={2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)},
  pages={3449--3457},
  year={2019},
  organization={IEEE}
}

An extention of this work can be found at: https://github.com/zhaoyuzhi/Semantic-Colorization-GAN

@article{zhao2020scgan,
  title={SCGAN: Saliency Map-guided Colorization with Generative Adversarial Network},
  author={Zhao, Yuzhi and Po, Lai-Man and Cheung, Kwok-Wai and Yu, Wing-Yin and Abbas Ur Rehman, Yasar},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  year={2020},
  publisher={IEEE}
}
Owner
Yuzhi ZHAO
[email protected] (电信卓越班) Ph.D.
Yuzhi ZHAO
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022