Skip to content

Kaslanarian/PyDT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyDecisionTree

决策树分类与回归模型,以及可视化

  • ID3分类树
  • C4.5分类树
  • CART分类树
  • CART回归树
  • 决策树可视化
  • REP剪枝
  • PEP剪枝
  • CCP剪枝

ID3

ID3决策树是最朴素的决策树分类器:

  • 无剪枝
  • 只支持离散属性
  • 采用信息增益准则

data.py中,我们记录了一个小的西瓜数据集,用于离散属性的二分类任务。我们可以像下面这样训练一个ID3决策树分类器:

from ID3 import ID3Classifier
from data import load_watermelon2
import numpy as np

X, y = load_watermelon2(return_X_y=True) # 函数参数仿照sklearn.datasets
model = ID3Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树是正确的。

C4.5

C4.5决策树分类器对ID3进行了改进:

  • 用信息增益率的启发式方法来选择划分特征;
  • 能够处理离散型和连续型的属性类型,即将连续型的属性进行离散化处理;
  • 剪枝;
  • 能够处理具有缺失属性值的训练数据;

我们实现了前两点,以及第三点中的预剪枝功能(超参数)

data.py中还有一个连续离散特征混合的西瓜数据集,我们用它来测试C4.5决策树的效果:

from C4_5 import C4_5Classifier
from data import load_watermelon3
import numpy as np

X, y = load_watermelon3(return_X_y=True) # 函数参数仿照sklearn.datasets
model = C4_5Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树正确.

CART

分类

CART(Classification and Regression Tree)是C4.5决策树的扩展,支持分类和回归。CART分类树算法使用基尼系数选择特征,此外对于离散特征,CART决策树在每个节点二分划分,缓解了过拟合。

这里我们用sklearn中的鸢尾花数据集测试:

from CART import CARTClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_iris(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTClassifier()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(accuracy_score(test_y, pred))

准确率95.55%。

回归

CARTRegressor类实现了决策树回归,以sklearn的波士顿数据集为例:

from CART import CARTRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, y = load_boston(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTRegressor()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(mean_squared_error(test_y, pred))

输出26.352171052631576,sklearn决策树回归的Baseline是22.46,性能近似,说明我们的实现正确。

决策树绘制

分类树

利用python3的graphviz第三方库和Graphviz(需要安装),我们可以将决策树可视化:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)
model = CARTClassifier()
model.fit(X, y)
tree_plot(model)

运行,文件夹中生成tree.png

iris_tree

如果提供了特征的名词和标签的名称,决策树会更明显:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

iris = load_iris()
model = CARTClassifier()
model.fit(iris.data, iris.target)
tree_plot(model,
          filename="tree2",
          feature_names=iris.feature_names,
          target_names=iris.target_names)

iris_tree2

绘制西瓜数据集2对应的ID3决策树:

from plot import tree_plot
from ID3 import ID3Classifier
from data import load_watermelon2

watermelon = load_watermelon2()
model = ID3Classifier()
model.fit(watermelon.data, watermelon.target)
tree_plot(
    model,
    filename="tree",
    font="SimHei",
    feature_names=watermelon.feature_names,
    target_names=watermelon.target_names,
)

这里要自定义字体,否则无法显示中文:

watermelon

回归树

用同样的方法,我们可以进行回归树的绘制:

from plot import tree_plot
from ID3 import ID3Classifier
from sklearn.datasets import load_boston

boston = load_boston()
model = ID3Classifier(max_depth=5)
model.fit(boston.data, boston.target)
tree_plot(
    model,
    feature_names=boston.feature_names,
)

由于生成的回归树很大,我们限制最大深度再绘制:

regression

调参

CART和C4.5都是有超参数的,我们让它们作为sklearn.base.BaseEstimator的派生类,借助sklearn的GridSearchCV,就可以实现调参:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split, GridSearchCV

wine = load_wine()
train_X, test_X, train_y, test_y = train_test_split(
    wine.data,
    wine.target,
    train_size=0.7,
)
model = CARTClassifier()
grid_param = {
    'max_depth': [2, 4, 6, 8, 10],
    'min_samples_leaf': [1, 3, 5, 7],
}

search = GridSearchCV(model, grid_param, n_jobs=4, verbose=5)
search.fit(train_X, train_y)
best_model = search.best_estimator_
print(search.best_params_, search.best_estimator_.score(test_X, test_y))
tree_plot(
    best_model,
    feature_names=wine.feature_names,
    target_names=wine.target_names,
)

输出最优参数和最优模型在测试集上的表现:

{'max_depth': 4, 'min_samples_leaf': 3} 0.8518518518518519

绘制对应的决策树:

wine

剪枝

在ID3和CART回归中加入了REP剪枝,C4.5则支持了PEP剪枝,CART分类树使用的是CCP剪枝。

剪枝参考: https://welts.xyz/2021/09/27/prune/

PEP剪枝

对IRIS数据集训练后的决策树进行PEP剪枝:

iris = load_iris()
model = C4_5Classifier()
X, y = iris.data, iris.target
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model.fit(train_X, train_y)
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/pre_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names)
model.pep_pruning()
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/post_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names,
)

剪枝前后的准确率分别为97.78%,100%,即泛化性能的提升:

prepre

CCP剪枝

对IRIS数据集训练后的决策树进行CCP剪枝:

剪枝前后:

prepost

About

决策树分类与回归模型的实现和可视化

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages