Skip to content

czq142857/DECOR-GAN

Repository files navigation

DECOR-GAN

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, Siddhartha Chaudhuri.

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021decor,
  title={DECOR-GAN: 3D Shape Detailization by Conditional Refinement},
  author={Zhiqin Chen and Vladimir G. Kim and Matthew Fisher and Noam Aigerman and Hao Zhang and Siddhartha Chaudhuri},
  journal={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Dependencies

Requirements:

  • Python 3.6 with numpy, h5py, scipy, sklearn and Cython
  • PyTorch 1.5 (other versions may also work)
  • PyMCubes (for marching cubes)
  • OpenCV-Python (for reading and writing images)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preparation.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Training

To train the network:

python main.py --data_style style_chair_64 --data_content content_chair_train --data_dir ./data/03001627/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 128 --train --gpu 0 --epoch 20
python main.py --data_style style_plane_32 --data_content content_plane_train --data_dir ./data/02691156/ --alpha 0.1 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_car_32 --data_content content_car_train --data_dir ./data/02958343/ --alpha 0.2 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_table_64 --data_content content_table_train --data_dir ./data/04379243/ --alpha 0.2 --beta 10.0 --input_size 16 --output_size 128 --train --gpu 0 --epoch 50
python main.py --data_style style_motor_16 --data_content content_motor_all_repeat20 --data_dir ./data/03790512/ --alpha 0.5 --beta 10.0 --input_size 64 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_laptop_32 --data_content content_laptop_all_repeat5 --data_dir ./data/03642806/ --alpha 0.2 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_plant_20 --data_content content_plant_all_repeat8 --data_dir ./data/03593526_03991062/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20

Note that style_chair_64 means the model will be trained with 64 detailed chairs. You can modify the list of detailed shapes in folder splits, such as style_chair_64.txt. You can also modify the list of content shapes in folder splits. The parameters input_size and output_size specify the resolutions of the input and output voxels. Valid settings are as follows:

Input resolution Output resolution Upsampling rate
64 256 x4
32 128 x4
32 256 x8
16 128 x8

GUI application

To launch UI for a pre-trained model, replace --data_content to the testing content shapes and replace --train with --ui.

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --ui --gpu 0

Testing

These are examples for testing a model trained with 32 detailed chairs. For others, please change the commands accordingly.

Rough qualitative testing

To output a few detailization results (the first 16 content shapes x 32 styles) and a T-SNE embedding of the latent space:

python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --test --gpu 0

The output images can be found in folder samples.

IOU, LP, Div

To test Strict-IOU, Loose-IOU, LP-IOU, Div-IOU, LP-F-score, Div-F-score:

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvoxstyle --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvox --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalvox --gpu 0

The first command prepares the patches in 64 detailed training shapes, thus --data_style is style_chair_64. Specifically, it removes duplicated patches in each detailed training shape and only keep unique patches for faster computation in the following testing procedure. The unique patches are written to folder unique_patches. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder unique_patches or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_IOU_mean.txt, result_LP_Div_Fscore_mean.txt, result_LP_Div_IOU_mean.txt ).

Cls-score

To test Cls-score:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimgreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimg --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalimg --gpu 0

The first command prepares rendered views of all content shapes, thus --data_content is content_chair_all. The rendered views are written to folder render_real_for_eval. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder render_real_for_eval or make a symbolic link.

The second command runs the model and outputs rendered views of the detailization results, in folder render_fake_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_Cls_score.txt ).

FID

To test FID-all and FID-style, you need to first train a classification model on shapeNet. You can use the provided pre-trained weights here (Clsshapenet_128.pth and Clsshapenet_256.pth for 1283 and 2563 inputs).

Backup links:

In case you need to train your own model, modify shapenet_dir in evalFID.py and run:

python main.py --prepFIDmodel --output_size 128 --gpu 0
python main.py --prepFIDmodel --output_size 256 --gpu 0

After you have the pre-trained classifier, use the following commands:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFIDreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFID --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalFID --gpu 0

The first command computes the mean and sigma vectors for real shapes and writes to precomputed_real_mu_sigma_128_content_chair_all_num_style_16.hdf5. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the output hdf5 file or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_FID.

The third command evaluates the outputs. The results are written to folder eval_output ( result_FID.txt ).

About

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published