Skip to content
This repository has been archived by the owner on Nov 17, 2021. It is now read-only.

davidalvarezdlt/master_thesis

Repository files navigation

Temporal copying and local hallucination for video inpainting

This repository contains the implementation of my master's thesis "Temporal copying and local hallucination for video inpainting". The code has been built using PyTorch Lightning, read its documentation to get a complete overview of how this repository is structured.

Disclaimer: The version published here might contain small differences with the thesis because of the refactoring.

About the data

The thesis uses three different datasets: GOT-10k for the background sequences, YouTube-VOS for realistic mask shapes and DAVIS to test the models with real masked sequences. Some pre-processing steps, which are not published in this repository, have been applied to the data. You can download the exact datasets used in the paper from this link.

The first step is to clone this repository, install its dependencies and other required system packages:

git clone https://github.com/davidalvarezdlt/master_thesis.git
cd master_thesis
pip install -r requirements.txt

apt-get update
apt-get install libturbojpeg ffmpeg libsm6 libxext6

Unzip the file downloaded from the previous link inside ./data. The resulting folder structure should look like this:

master_thesis/
    data/
        DAVIS-2017/
        GOT10k/
        YouTubeVOS/
    lightning_logs/
    master_thesis/
    .gitignore
    .pre-commit-config.yaml
    LICENSE
    README.md
    requirements.txt

Training the Dense Flow Prediction Network (DFPN) model

In short, you can train the model by calling:

python -m master_thesis

You can modify the default parameters of the code by using CLI parameters. Get a complete list of the available parameters by calling:

python -m master_thesis --help

For instance, if we want to train the model using 2 frames, with a batch size of 8 and using one GPUs, we would call:

python -m master_thesis --frames_n 2 --batch_size 8 --gpus 1

Every time you train the model, a new folder inside ./lightning_logs will be created. Each folder represents a different version of the model, containing its checkpoints and auxiliary files.

Training the Copy-and-Hallucinate Network (CHN) model

In this case, you will need to specify that you want to train the CHN model. To do so:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint>

Where --chn_aligner is the model used to align the frames (either cpn or dfpn) and --chn_aligner_checkpoint is the path to its checkpoint.

You can download the checkpoint of the CPN from its original repository (file named weight.pth).

Testing the Dense Flow Prediction Network (DFPN) model

You can align samples from the test split and store them in TensorBoard by calling:

python -m samplernn_pase --test --test_checkpoint <test_checkpoint>

Where --test_checkpoint is a valid path to the model checkpoint that should be used.

Testing the Copy-and-Hallucinate Network (CHN) model

You can inpaint test sequences (they will be stored in a folder) using the three algorithms by calling:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint> --test --test_checkpoint <test_checkpoint>

Notice that now the value of --test_checkpoint must be a valid path to a CHN checkpoint, while --chn_aligner_checkpoint might be the path to a checkpoint of either CPN or DFPN.

Citation

If you find this thesis useful, please use the following citation:

@thesis{Alvarez2020,
    type = {Master's Thesis},
    author = {David Álvarez de la Torre},
    title = {Temporal copying and local hallucination for video onpainting},
    school = {ETH Zürich},
    year = 2020,
}