Skip to content

facebookresearch/nbref

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A neural-based binary analysis tool

Introduction

This directory contains the demo of a neural-based binary analysis tool. We test the framework using multiple binary analysis tasks: (i) vulnerability detection. (ii) code similarity measures. (iii) decompilations. (iv) malware analysis (coming later).

Requirements

  • Python 3.7.6
  • Python packages
    • dgl 0.6.0
    • numpy 1.18.1
    • pandas 1.2.0
    • scipy 1.4.1
    • sklearn 0.0
    • tensorboard 2.2.1
    • torch 1.5.0
    • torchtext 0.2.0
    • tqdm 4.42.1
    • wget 3.2
  • C++14 compatible compiler
  • Clang++ 3.7.1

Tasks and Dataset preparation

Binary code similarity measures

  1. Download dataset
    • Download POJ-104 datasets from here and extract them into data/.
  2. Compile and preprocess
    • Run python preprocess/extract_obj.py -asm data/obj (clang++-3.7.1 required)
    • Run python preprocess/split_dataset.py -i data/obj -m p -o data/split.pkl to split the dataset into train/valid/test sets.
    • Run python preprocess/sim_preprocess.py to compile the binary code into graphs data.
    • *(part of the preprocessing code are from [1])

Binary Vulnerability detections

  1. Cramming the binary dataset
    • The dataset is built on top of Devign. We compile the entire library based on the commit id and dump the binary code of the vulnerable functions. The cramming code is given in preprocess/cram_vul_dataset.
  2. Download Preprocessed data
    • Run ./preprocess.sh (clang++-3.7.1 required), or
    • You can directly download the preprocessed datasets from here and extract them into data/.
    • Run python preprocess/vul_preprocess.py to compile the binary code into graphs data

Binary decompilation [N-Bref]

  1. Download dataset
    • Download the demo datasets (raw and preprocessed data) from here and extract them into data/. (More datasets to come.)
    • No need to compile the code into graph again as the data has already been preprocessed.

Training and Evaluation

Binary code similarity measures

  • Run cd baseline_model && python run_similarity_check.py

Binary Vulnerability detections

  • Run cd baseline_model && python run_vulnerability_detection.py

Binary decompilation [N-Bref]

  1. Dump the trace of tree expansion:
    • To accelerate the online processing of the tree output, we will dump the trace of the trea data by running python -m preprocess.dump_trace
  2. Training scripts:
    • First, cd baseline model.
    • To train the model using torch parallel, run python run_tree_transformer.py.
    • To train it on multi-gpu using distribute pytorch, run python run_tree_transformer_multi_gpu.py
    • To evaluate, run python run_tree_transformer.py --eval
    • To evaluate a multi-gpu trained model, run python run_tree_transformer_multi_gpu.py --eval

References

[1] Ye, Fangke, et al. "MISIM: An End-to-End Neural Code Similarity System." arXiv preprint arXiv:2006.05265 (2020).

[2] Zhou, Yaqin, et al. "Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks." Advances in Neural Information Processing Systems. 2019.

[3] Shi, Zhan, et al. "Learning Execution through Neural Code Fusion.", ICLR (2019).

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

About

Codebase for paper "N-Bref A High-fidelity Decompiler Exploiting Programming Structures"

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published