Skip to content

hellopipu/RefineGAN

Repository files navigation

RefineGAN

unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpack can be found at https://github.com/tmquan/RefineGAN

To Do

  • run the original tensorpack code (sorry, can't run tensorpack on my GPU)
  • pytorch implementation and experiments on brain images with radial mask
  • bug fixed. the mean psnr of zero-filled image is not exactly the same as the value in original paper, although the model improvement is similar
  • experiments on different masks

Install

python>=3.7.11 is required with all requirements.txt installed including pytorch>=1.10.0

git clone https://github.com/hellopipu/RefineGAN.git
cd RefineGAN
pip install -r requirements.txt

How to use

for training:

cd run_sh
sh train.sh

the model will be saved in folder weight, tensorboard information will be saved in folder log. You can change the arguments in script such as --mask_type and --sampling_rate for different experiment settings.

for tensorboard:

check the training curves while training

tensorboard --logdir log

the training info of my experiments is already in log folder

for testing:

test after training, or you can download my trained model weights from google drive.

cd run_sh
sh test.sh

for visualization:

cd run_sh
sh visualize.sh

training curves

sampling rates : 10%(light orange), 20%(dark blue), 30%(dark orange), 40%(light blue). You can check more loss curves of my experiments using tensorboard.

loss_G_loss_total loss_recon_img_Aa

PSNR on training set over 500 epochs, compared with results shown in original paper.

my_train_psnr paper_train_psnr

Test results

mean PSNR on validation dataset with radial mask of different sampling rates, batch_size is set as 4;

model 10% 20% 30% 40%
zero-filled 22.296 25.806 28.997 31.699
RefineGAN 32.705 36.734 39.961 42.903

Test cases visualization

rate from left to right: mask, zero-filled, prediction and ground truth error (zero-filled) and error (prediction)
10%
20%
30%
40%

Notes on RefineGAN

  • data processing before training : complex value represents in 2-channel , each channel rescale to [-1,1]; accordingly the last layer of generator is tanh()
  • Generator uses residual learning for reconstruction task
  • Generator is a cascade of two U-net, the U-net doesn't do concatenation but addition when combining the enc and dec features.
  • each U-net is followed by a Data-consistency (DC) module, although the paper doesn't mention it.
  • the last layer of generator is tanh layer on two-channel output, so when we revert output to original pixel scale and calculate abs, the pixel value may exceed 255; we need to do clipping while calculating psnr
  • while training, we get two random image samples A, B for each iteration, RefineGAN calculates a large amount of losses (it may be redundant) including reconstruction loss on different phases of generator output in both image domain and frequency domain, total variantion loss and WGAN loss
  • one special loss is D_loss_AB, D is trained to only distinguish from real samples and fake samples, so D should not only work for (real A, fake A) or (real B, fake B), but also work for (real A, fake B) input
  • WGAN-gp may be used to improve the performance
  • small batch size MAY BE better. In my experiment, batch_size=4 is better than batch_size=16

I will appreciate if you can find any implementation mistakes in codes.

About

unofficial pytorch implementation of RefineGAN

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published