Skip to content

jina-ai/executor-3d-encoder

Repository files navigation

3D Mesh Encoder

An Executor that receives Documents containing point sets data in its tensor attribute, with shape (N, 3) and encodes it to embeddings of shape (D,). Now, the following pretrained models are ready to be used to create embeddings:

  • PointConv-Shapenet-d512: A PointConv model resulted in 512 dimension of embeddings, which is finetuned based on ShapeNet dataset.
  • PointConv-Shapenet-d1024: A PointConv model resulted in 1024 dimension of embeddings, which is finetuned based on ShapeNet dataset.

Usage

via Docker image (recommended)

from jina import Flow

f = Flow().add(uses='jinahub+docker://MeshDataEncoder', \
               uses_with={'pretrained_model': 'PointConv-Shapenet-d512'})

via source code

from jina import Flow

f = Flow().add(uses='jinahub://MeshDataEncoder', \
               uses_with={'pretrained_model': 'PointConv-Shapenet-d512'})

This Executor offers a GPU tag to speed up encoding. For more information on how to run the executor on GPU, check out the documentation.

How to finetune pretrained-model?

Finetune pretrained-model with finetuner

install finetuner

$ pip install finetuner

prepare dataset

TBD...

finetuning model with labeled dataset

$ python finetune.py --help

$ python finetune.py --model_name pointconv \
    --train_dataset /path/to/train.bin \
    --eval_dataset /path/to/eval.bin \
    --batch_size 128 \
    --epochs 50

finetuning model with unlabeled dataset

$ python finetune.py --model_name pointconv \
    --train_dataset /path/to/unlabeled_data.bin \
    --interactive

Finetune pretrained-model with Pytorch Lightning

prepare dataset

To use your customized dataset, you should design your own dataset code, like those in datasets/ directory. Here datasets/modelnet40.py is an example, you must at least implement __len__ and __getitem__ functions according to your logics.

class ModelNet40(torch.utils.data.Dataset):
    def __init__(self, data_path, sample_points=1024, seed=10) -> None:
        super().__init__()
        # extract point data and labels from your file, e.g. npz, h5, etc.
        data = np.load(data_path)
        self.points = data['tensor']
        self.labels = data['labels']
        self.sample_points = sample_points

    def __len__(self):
        # return the total length of your data
        return len(self.labels)

    def __getitem__(self, index):
        return (
            # process on the fly, if needed
            preprocess(self.points[index], num_points=self.sample_points),
            self.labels[index],
        )

finetuning model with labeled dataset

Now we support PointNet, PointConv, PointNet++, PointMLP, RepSurf and Curvenet. To know more details about the arguments, please run python finetune_pl.py --help in cmd.

$ python finetune_pl.py --help

$ python finetune_pl.py --model_name pointconv \
    --train_dataset /path/to/train.bin \
    --eval_dataset /path/to/eval.bin \
    --split_ratio 0.8 \
    --checkpoint_path /path/to/checkpoint/ \
    --embed_dim 512 \
    --hidden_dim 1024 \
    --batch_size 128 \
    --epochs 50

Benchmark

Below is our pretrained models' performance of 3D point cloud classification on ModelNet40 official test dataset.

dataset model name batch size embedding dims test loss test overall accuracy
modelnet40 PointNet 32 256 0.63 0.8225
modelnet40 PointNet 32 512 0.63 0.8254
modelnet40 PointNet 32 1024 0.65 0.8148
modelnet40 PointNet++ 32 256 0.48 0.863
modelnet40 PointNet++ 32 512 0.44 0.8712
modelnet40 PointNet++ 32 1024 0.47 0.8655
modelnet40 PointConv 32 128 0.55 0.8452
modelnet40 PointConv 32 256 0.53 0.8517
modelnet40 PointConv 32 512 0.54 0.8505
modelnet40 PointConv 32 1024 0.58 0.8533
modelnet40 PointMLP 32 64 0.46 0.8728
modelnet40 RepSurf 32 256 0.44 0.8776
modelnet40 RepSurf 32 512 0.45 0.8655
modelnet40 RepSurf 32 1024 0.43 0.8724
modelnet40 CurveNet 32 128 0.45 0.8651
modelnet40 CurveNet 32 256 0.45 0.8647
modelnet40 CurveNet 32 512 0.47 0.8687
modelnet40 CurveNet 32 1024 0.48 0.857

References

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
  • PointConv: Deep Convolutional Networks on 3D Point Clouds
  • PointNet++: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
  • PointMLP: Rethinking Network Design and Local Geometry in Point Cloud
  • RepSurf: Surface Representation for Point Clouds
  • CurveNet: Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

About

An executor that wraps 3D mesh models and encodes 3D content documents to d-dimension vector.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages