Skip to content

ubc-vision/COTR

Repository files navigation

COTR: Correspondence Transformer for Matching Across Images (ICCV 2021)

This repository is a reference implementation for COTR. COTR establishes correspondence in a functional and end-to-end fashion. It solves dense and sparse correspondence problem in the same framework.

[arXiv], [video], [presentation], [pretrained_weights], [distance_matrix]

Training

1. Prepare data

See prepare_data.md.

2. Setup configuration json

Add an entry inside COTR/global_configs/dataset_config.json, make sure it is correct on your system. In the provided dataset_config.json, we have different configurations for different clusters.

Explanations on some json parameters:

valid_list_json: The valid list json file, see 2. Valid list in Scripts to generate dataset.

train_json/val_json/test_json: The splits json files, see 3. Train/val/test split in Scripts to generate dataset.

scene_dir: Path to Megadepth SfM folder(rectified ones!). {0}{1} are scene and sequence id used by f-string.

image_dir/depth_dir: Path to images and depth maps of Megadepth.

3. Example command

python train_cotr.py --scene_file sample_data/jsons/debug_megadepth.json --dataset_name=megadepth --info_level=rgbd --use_ram=no --batch_size=2 --lr_backbone=1e-4 --max_iter=200 --valid_iter=10 --workers=4 --confirm=no

Important arguments:

use_ram: Set to "yes" to load data into main memory.

crop_cam: How to crop the image, it will change the camera intrinsic accordingly.

scene_file: The sequence control file.

suffix: Give the model a unique suffix.

load_weights: Load a pretrained weights, only need the model name, it will automatically find the folder with the same name under the output folder, and load the "checkpoint.pth.tar".

4. Our training commands

As stated in the paper, we have 3 training stages. The machine we used has 1 RTX 3090, i7-10700, and 128G RAM. We store the training data inside the main memory during the first two stages.

Stage 1: python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=yes --use_cc=no --batch_size=24 --learning_rate=1e-4 --lr_backbone=0 --max_iter=300000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_1 --valid_iter=1000 --enable_zoom=no --crop_cam=crop_center_and_resize --out_dir=./out/cotr

Stage 2: python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=yes --use_cc=no --batch_size=16 --learning_rate=1e-4 --lr_backbone=1e-5 --max_iter=2000000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_2 --valid_iter=10000 --enable_zoom=no --crop_cam=crop_center_and_resize --out_dir=./out/cotr --load_weights=model:cotr_resnet50_layer3_1024_dset:megadepth_sushi_bs:24_pe:lin_sine_lrbackbone:0.0_suffix:stage_1

Stage 3: python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=no --use_cc=no --batch_size=16 --learning_rate=1e-4 --lr_backbone=1e-5 --max_iter=300000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_3 --valid_iter=2000 --enable_zoom=yes --crop_cam=no_crop --out_dir=./out/cotr --load_weights=model:cotr_resnet50_layer3_1024_dset:megadepth_sushi_bs:16_pe:lin_sine_lrbackbone:1e-05_suffix:stage_2

Demos

Check out our demo video at here.

1. Install environment

Our implementation is based on PyTorch. Install the conda environment by: conda env create -f environment.yml.

Activate the environment by: conda activate cotr_env.

2. Download the pretrained weights

Download the pretrained weights at here. Extract in to ./out, such that the weights file is at /out/default/checkpoint.pth.tar.

3. Single image pair demo

python demo_single_pair.py --load_weights="default"

Example sparse output:

Example dense output with triangulation:

Note: This example uses 10K valid sparse correspondences to densify.

4. Facial landmarks demo

python demo_face.py --load_weights="default"

Example:

5. Homography demo

python demo_homography.py --load_weights="default"

6. Guided matching demo

python demo_guided_matching.py --load_weights="default"

7. Two view reconstruction demo

Note: this demo uses both known camera intrinsic and extrinsic. python demo_reconstruction.py --load_weights="default" --max_corrs=2048 --faster_infer=yes

8. Annotation suggestions

If the annotator knows the scale difference of two buildings, then COTR can skip the scale estimation step. python demo_wbs.py --load_weights="default"

Faster Inference

We added a faster inference engine. The idea is that for each network invocation, we want to solve more queries. We search for nearby queries and group them on the fly. Note: Faster inference engine has slightly worse spatial accuracy. Guided matching demo now supports faster inference. The time consumption for default inference engine is ~216s, and the time consumption for faster inference engine is ~79s, on 1080Ti. Try python demo_guided_matching.py --load_weights="default" --faster_infer=yes.

Citation

If you use this code in your research, please cite our paper:

@inproceedings{jiang2021cotr,
  title={{COTR: Correspondence Transformer for Matching Across Images}},
  author={Wei Jiang and Eduard Trulls and Jan Hosang and Andrea Tagliasacchi and Kwang Moo Yi},
  booktitle=ICCV,
  year={2021}
}

About

Code release for "COTR: Correspondence Transformer for Matching Across Images"(ICCV 2021)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages