Bottom-up Human Pose Estimation

Overview

Introduction

This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2021.

This repo is built on Bottom-up-Higher-HRNet.

Main Results

Results on COCO val2017 without multi-scale test

Method Backbone Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L)
HigherHRNet HRNet-w32 512 28.6M 47.9 67.1 86.2 73.0 61.5 76.1
HigherHRNet + SWAHR HRNet-w32 512 28.6M 48.0 68.9 87.8 74.9 63.0 77.4
HigherHRNet HRNet-w48 640 63.8M 154.3 69.9 87.2 76.1 65.4 76.4
HigherHRNet + SWAHR HRNet-w48 640 63.8M 154.6 70.8 88.5 76.8 66.3 77.4

Results on COCO val2017 with multi-scale test

Method Backbone Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L)
HigherHRNet HRNet-w32 512 28.6M 47.9 69.9 87.1 76.0 65.3 77.0
HigherHRNet + SWAHR HRNet-w32 512 28.6M 48.0 71.4 88.9 77.8 66.3 78.9
HigherHRNet HRNet-w48 640 63.8M 154.3 72.1 88.4 78.2 67.8 78.3
HigherHRNet + SWAHR HRNet-w48 640 63.8M 154.6 73.2 89.8 79.1 69.1 79.3

Results on COCO test-dev2017 without multi-scale test

Method Backbone Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L)
OpenPose* - - - - 61.8 84.9 67.5 57.1 68.2
Hourglass Hourglass 512 277.8M 206.9 56.6 81.8 61.8 49.8 67.0
PersonLab ResNet-152 1401 68.7M 405.5 66.5 88.0 72.6 62.4 72.3
PifPaf - - - - 66.7 - - 62.4 72.9
Bottom-up HRNet HRNet-w32 512 28.5M 38.9 64.1 86.3 70.4 57.4 73.9
HigherHRNet HRNet-w32 512 28.6M 47.9 66.4 87.5 72.8 61.2 74.2
HigherHRNet + SWAHR HRNet-w32 512 28.6M 48.0 67.9 88.9 74.5 62.4 75.5
HigherHRNet HRNet-w48 640 63.8M 154.3 68.4 88.2 75.1 64.4 74.2
HigherHRNet + SWAHR HRNet-w48 640 63.8M 154.6 70.2 89.9 76.9 65.2 77.0

Results on COCO test-dev2017 with multi-scale test

Method Backbone Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L)
Hourglass Hourglass 512 277.8M 206.9 63.0 85.7 68.9 58.0 70.4
Hourglass* Hourglass 512 277.8M 206.9 65.5 86.8 72.3 60.6 72.6
PersonLab ResNet-152 1401 68.7M 405.5 68.7 89.0 75.4 64.1 75.5
HigherHRNet HRNet-w48 640 63.8M 154.3 70.5 89.3 77.2 66.6 75.8
HigherHRNet + SWAHR HRNet-w48 640 63.8M 154.6 72.0 90.7 78.8 67.8 77.7

Results on CrowdPose test

Method AP Ap .5 AP .75 AP (E) AP (M) AP (H)
Mask-RCNN 57.2 83.5 60.3 69.4 57.9 45.8
AlphaPose 61.0 81.3 66.0 71.2 61.4 51.1
SPPE 66.0. 84.2 71.5 75.5 66.3 57.4
OpenPose - - - 62.7 48.7 32.3
HigherHRNet 65.9 86.4 70.6 73.3 66.5 57.9
HigherHRNet + SWAHR 71.6 88.5 77.6 78.9 72.4 63.0
HigherHRNet* 67.6 87.4 72.6 75.8 68.1 58.9
HigherHRNet + SWAHR* 73.8 90.5 79.9 81.2 74.7 64.7

'*' indicates multi-scale test

Installation

The details about preparing the environment and datasets can be referred to README.md.

Downlaod our pretrained weights from BaidunYun(Password: 8weh) or GoogleDrive to ./models.

Training and Testing

Testing on COCO val2017 dataset using pretrained weights

For single-scale testing:

python tools/dist_valid.py \
    --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_higher_hrnet_w32_512.pth

By default, we use horizontal flip. To test without flip:

python tools/dist_valid.py \
    --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_higher_hrnet_w32_512.pth \
    TEST.FLIP_TEST False

Multi-scale testing is also supported, although we do not report results in our paper:

python tools/dist_valid.py \
    --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_higher_hrnet_w32_512.pth \
    TEST.SCALE_FACTOR '[0.5, 1.0, 2.0]'

Training on COCO train2017 dataset

python tools/dist_train.py \
    --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml 

By default, it will use all available GPUs on the machine for training. To specify GPUs, use

CUDA_VISIBLE_DEVICES=0,1 python tools/dist_train.py \
    --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml 

Testing on your own images

python tools/dist_inference.py \
    --img_dir path/to/your/directory/of/images \
    --save_dir path/where/results/are/saved \
    --cfg experiments/coco/higher_hrnet/w32_512_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_higher_hrnet_w32_512.pth \
    TEST.SCALE_FACTOR '[0.5, 1.0, 2.0]'

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{LuoSWAHR,
  title={Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation},
  author={Zhengxiong Luo and Zhicheng Wang and Yan Huang and Liang Wang and Tieniu Tan and Erjin Zhou},
  booktitle={CVPR},
  year={2021}
}
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022