Sorting-Algorithms - All information about sorting algorithm you need and you can visualize the code tracer

Overview

Sorting-Algorithms

This Repo have all information needed to study Sorting Algorithm and there is a tracer to see how the algorithm work

You can see how to algorithm run with two way you can use the button of Generate Nums to generate array and see how the algorithm work or you can enter your numbers that you want to check them by write them in the text box seperated by spaces and use button Use my Numbers to use them to see how the algorithms work

Requirements

For Linux Users only

open your terminal

sudo apt install python3
sudo apt install python3-tk

How to run

Linux

git clone https://github.com/7oSkaaa/Sorting-Algorithms.git
cd Sorting-Algorithms
python3 main.py

Windows

you can download the repo as zip and extract it

OR

you can use cmd

git clone https://github.com/7oSkaaa/Sorting-Algorithms.git

go to the folder of the repo and just double click on main.exe

Video:

Sorting.Algorithms.mp4

You can read the information about each algorithm from the algorithms and go to the tracer and run it to see how the algorithm work

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.

Time Complexity

Best Case is O(n)

Worst Case is O(n2)

Pseudocode

begin BubbleSort(list)

   for all elements of list
      if list[i] > list[i+1]
         swap list[i] and list[i + 1]
   return list
   
end BubbleSort

Code

C++

void Bubble_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n; i++){
        bool is_sorted = true;
        for(int j = i; j < n; j++){
            if(nums[j] < nums[i])
                swap(nums[i], nums[j]), is_sorted = false;
        }
        if(is_sorted) return;
    }
}

Python

def bubble_sort(data):
    size = len(data)
    for i in range(size - 1):
        for j in range(size - i - 1):
            if data[j] > data[j  +1]:
                data[j], data[j + 1] = data[j + 1], data[j]

Java

void bubbleSort(int arr[]){
    int n = arr.length;
    for (int i = 0; i < n - 1; i++)
        for (int j = 0; j < n - i - 1; j++)
            if (arr[j] > arr[j + 1]){
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
}

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering ascending order) from unsorted part and putting it at the beginning. The algorithm maintains two subarrays in a given array.

  1. The subarray which is already sorted.
  2. Remaining subarray which is unsorted. In every iteration of selection sort, the minimum element (considering ascending order) from the unsorted subarray is picked and moved to the sorted subarray.

Time Complexity

Best Case is O(n2)

Worst Case is O(n2)

Pseudocode

begin SelectionSort(list)
    for i from 0 to n - 2 do:
      min = i
      for j from i + 1 to n - 1 do:
        if list[j] < list[min]: Min = j
      swap list[j] and list[min]
end SelectionSort

Code

C++

void Selection_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n; i++){
        int min = i;
        for(int j = i + 1; j < n; j++){
            if(nums[j] < nums[min])
                min = j;
        }
        swap(nums[i], nums[min]);
    }
}

Python

def selection_sort(data, drawData, timeTick):
    for i in range(len(data) - 1):
        Min_Idx = i
        for k in range(i + 1, len(data)):
            if data[k] < data[Min_Idx]:
                Min_Idx = k

Java

void selection_sort(int arr[]){
    int n = arr.length;
    for (int i = 0; i < n - 1; i++){
        int min_idx = i;
        for (int j = i + 1; j < n; j++)
            if (arr[j] < arr[min_idx])
                min_idx = j;
        int temp = arr[min_idx];
        arr[min_idx] = arr[i];
        arr[i] = temp;
    }
}

Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part. Algorithm To sort an array of size n in ascending order:

  1. Iterate from arr[1] to arr[n] over the array.
  2. Compare the current element (key) to its predecessor.
  3. If the key element is smaller than its predecessor, compare it to the elements before. Move the greater elements one position up to make space for the swapped element.

Time Complexity

Best Case is O(n2)

Worst Case is O(n2)

Pseudocode

begin InsertionSort(list)
    for i from 1 to n - 1 do:
      v = list[i]
      j = i - 1
      while j >= 0 and list[j] > v do:
          list[j + 1] = list[j]
          j = j - 1
      list[j + 1] = v
end SelectionSort

Code

C++

void Insertion_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n; i++){
        int value = nums[i], j = i - 1;
        while(j >= 0 && nums[j] > value)
            nums[j + 1] = nums[j], j--;
        nums[j + 1] = value;
    }
}

Python

def insertion_sort(data, drawData, timeTick):
    for i in range(len(data)):
        temp = data[i]
        k = i
        while k > 0 and temp < data[k - 1]:
            data[k] = data[k - 1]; k -= 1
        data[k] = temp

Java

void insertion_sort(int arr[]){
    int n = arr.length;
    for (int i = 1; i < n; ++i) {
        int key = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j =- 1;
        }
        arr[j + 1] = key;
    }
}

Merge Sort

Merge Sort is a Divide and Conquer algorithm. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m + 1..r] are sorted and merges the two sorted sub-arrays into one. See the following C implementation for details.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n x log(n))

Pseudocode

begin MergeSort(list, left, right):
    if left > right 
        return
    mid = (left+right)/2
    mergeSort(list, left, mid)
    mergeSort(list, mid+1, right)
    merge(arr, list, mid, right)
end MergeSort

begin merge(list, left, right)
  mid = (left + right) / 2
  L[left ... mid]
  R[mid + 1 ... right]
  i = 0, j = 0, k = left
  while i < len(L) and j < len(R)
      if L[i] <= R[j]
         list[k] = L[i]
         k++, i++
      else
         list[k] = R[j]
         k++, j++
  while i < len(L) do
      list[k] = L[i]
      k++, i++
  while(j < len(R) do
      list[k] = R[j]
      k++, j++

end merge

Code

C++

void Merge(int l, int m, int r, vector < int >& nums){
    int sz_1 = m - l + 1, sz_2 = r - m;
    vector < int > left(sz_1), right(sz_2);
    for(int i = 0; i < sz_1; i++) left[i] = nums[l + i];
    for(int i = 0; i < sz_2; i++) right[i] = nums[m + 1 + i];
    int i = 0, j = 0, k = l;
    while(i < sz_1 && j < sz_2)
        nums[k++] = (left[i] <= right[j] ? left[i++] : right[j++]);
    while(i < sz_1) nums[k++] = left[i++];
    while(j < sz_2) nums[k++] = right[j++];
}

void Merge_Sort(vector < int >& nums, int l, int r){
    if(l >= r) return;
    int m = l + (r - l) / 2;
    Merge_Sort(nums, l, m);
    Merge_Sort(nums, m + 1, r);
    Merge(l, m, r, nums);
}

Python

def merge(data, start, mid, end, drawData, timeTick):
    L = data[start : mid + 1]
    R = data[mid + 1: end + 1]
    L_idx, R_idx, S_idx = 0, 0, start
    while L_idx < len(L) and R_idx < len(R):
        if L[L_idx] <= R[R_idx]:
            data[S_idx] = L[L_idx]
            L_idx += 1
        else:
            data[S_idx] = R[R_idx]
            R_idx += 1
        S_idx += 1
    while L_idx < len(L):
        data[S_idx] = L[L_idx]
        L_idx += 1; S_idx += 1

    while R_idx < len(R):
        data[S_idx] = R[R_idx]
        R_idx += 1; S_idx += 1


def merge_sort(data, start, end):
    if start < end:
        mid = int((start + end) / 2)
        merge_sort(data, start, mid)
        merge_sort(data, mid + 1, end)
        merge(data, start, mid, end)

Java

void merge(int arr[], int l, int m, int r){
    int n1 = m - l + 1;
    int n2 = r - m;
    int L[] = new int[n1];
    int R[] = new int[n2];
    for (int i = 0; i < n1; ++i)
        L[i] = arr[l + i];
    for (int j = 0; j < n2; ++j)
        R[j] = arr[m + 1 + j];
    int i = 0, j = 0;
    int k = l;
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        }
        else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }
    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }
    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}

void sort(int arr[], int l, int r){
    if (l < r) {
        int m =l+ (r-l)/2;
        sort(arr, l, m);
        sort(arr, m + 1, r);
        merge(arr, l, m, r);
    }
}

Quick Sort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array around the picked pivot. There are many different versions of quickSort that pick pivot in different ways.

  1. Always pick first element as pivot.
  2. Always pick last element as pivot (implemented below)
  3. Pick a random element as pivot.
  4. Pick median as pivot.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n2)

Pseudocode

begin quickSort(arr[], low, high)
    if low < high do
        pi = partition(arr, low, high)
        quickSort(arr, low, pi - 1) 
        quickSort(arr, pi + 1, high)
end quickSort
begin partition (arr[], low, high)
    pivot = arr[high] 
    i = low - 1
    for j from low to high- 1
        if arr[j] < pivot
            i++;    
            swap arr[i] and arr[j]
    swap arr[i + 1] and arr[high])
    return (i + 1)
}
end partition

Code

C++

int Partition(vector < int >& nums, int l, int r){
    int pivot = nums[r], i = l;
    for(int j = l; j < r; j++){
        if(nums[j] <= pivot)
            swap(nums[i++], nums[j]);
    }
    swap(nums[i], nums[r]);
    return i;
}

void Quick_Sort(vector < int >& nums, int l, int r){
    if(l >= r) return;
    int pivot = Partition(nums, l, r);
    Quick_Sort(nums, l, pivot - 1);
    Quick_Sort(nums, pivot + 1, r);
}

Python

def partition(data, start, end, drawData, timeTick):
    i = start + 1
    pivot = data[start]

    for j in range(start + 1, end + 1):
        if data[j] < pivot:
            data[i], data[j] = data[j], data[i]
            i += 1
    data[start], data[i - 1] = data[i - 1], data[start]
    return i - 1

def quick_sort(data, start, end, drawData, timeTick):
    if start < end:
        pivot_position = partition(data, start, end, drawData, timeTick)
        quick_sort(data, start, pivot_position - 1, drawData, timeTick)
        quick_sort(data, pivot_position + 1, end, drawData, timeTick)

Java

int partition (int a[], int start, int end)  {  
    int pivot = a[end];  
    int i = (start - 1);  
    for (int j = start; j <= end - 1; j++)  {  
        if (a[j] < pivot){  
            i++;  
            int t = a[i];  
            a[i] = a[j];  
            a[j] = t;  
        }  
    }  
    int t = a[i + 1];  
    a[i + 1] = a[end];  
    a[end] = t;  
    return (i + 1);  
}  
    
void quick_sort(int a[], int start, int end){  
    if (start < end)  {  
        int p = partition(a, start, end);  
        quick(a, start, p - 1);  
        quick(a, p + 1, end);  
    }
}  

Counting Sort

Counting sort is a sorting technique based on keys between a specific range. It works by counting the number of objects having distinct key values (kind of hashing). Then doing some arithmetic to calculate the position of each object in the output sequence.

Time Complexity

Best Case is O(n + k)

Worst Case is O(n + k)

Pseudocode

begin CountingSort(A)
  for i = 0 to k do
  c[i] = 0
  for j = 0 to n do
  c[A[j]] = c[A[j]] + 1
  for i = 1 to k do
  c[i] = c[i] + c[i-1]
  for j = n - 1 downto 0 do
  B[ c[A[j]]-1 ] = A[j]
  c[A[j]] = c[A[j]] - 1
end CountingSort

Code

C++

void countSort(vector < int >& nums){
    int max = *max_element(nums.begin(), nums.end());
    int min = *min_element(nums.begin(), nums.end());
    int range = max - min + 1;
    vector < int > count(range), output(arr.size());
    for (int i = 0; i < arr.size(); i++)
        count[arr[i] - min]++;
    for (int i = 1; i < count.size(); i++)
        count[i] += count[i - 1];
    for (int i = arr.size() - 1; i >= 0; i--) {
        output[count[arr[i] - min] - 1] = arr[i];
        count[arr[i] - min]--;
    }
    for (int i = 0; i < arr.size(); i++)
        arr[i] = output[i];
}

Python

def counting_sort(data, drawData, timeTick):
    n = max(data) + 1
    count = [0] * n
    for item in data:
        count[item] += 1
    k = 0
    for i in range(n):
        for j in range(count[i]):
            data[k] = i
            k += 1

Java

static void countSort(int[] arr){
  int max = Arrays.stream(arr).max().getAsInt();
  int min = Arrays.stream(arr).min().getAsInt();
  int range = max - min + 1;
  int count[] = new int[range];
  int output[] = new int[arr.length];
  for (int i = 0; i < arr.length; i++)
    count[arr[i] - min]++;
  for (int i = 1; i < count.length; i++)
    count[i] += count[i - 1];
  for (int i = arr.length - 1; i >= 0; i--){
    output[count[arr[i] - min] - 1] = arr[i];
    count[arr[i] - min]--;
  }
  for (int i = 0; i < arr.length; i++)
    arr[i] = output[i];
}

Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to selection sort where we first find the minimum element and place the minimum element at the beginning. We repeat the same process for the remaining elements. Heap Sort Algorithm for sorting in increasing order:

  1. Build a max heap from the input data.
  2. At this point, the largest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of the tree.
  3. Repeat step 2 while the size of the heap is greater than 1.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n x log(n))

Pseudocode

begin Heapify(A as array, n as int, i as int)
    max = i
    leftchild = 2i + 1
    rightchild = 2i + 2
    if (leftchild <= n) and (A[i] < A[leftchild])
        max = leftchild
    else 
        max = i
    if (rightchild <= n) and (A[max]  > A[rightchild])
        max = rightchild
    if (max != i)
        swap(A[i], A[max])
        Heapify(A, n, max)
end Heapify

Heapsort(A as array)
   n = length(A)
   for i = n/2 downto 1   
     Heapify(A, n ,i)
   
   for i = n downto 2
     exchange A[1] with A[i]
     A.heapsize = A.heapsize - 1
     Heapify(A, i, 0)
end Heapsort

Code

C++

void heapify(vector < int >& nums, int i){
    int largest = i, l = 2 * i + 1, r = 2 * i + 2, n = nums.size();
    if (l < n && arr[l] > arr[largest]) largest = l;
    if (r < n && arr[r] > arr[largest]) largest = r;
    if (largest != i) {
        swap(arr[i], arr[largest]);
        heapify(arr, n, largest);
    }
}

void heapSort(vector < int >& nums){
    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, n, i);
    for (int i = n - 1; i > 0; i--) {
        swap(arr[0], arr[i]);
        heapify(arr, i, 0);
    }
}

Python

def heapify(data, n, i):
    largest, left, right = i, 2 * i + 1, 2 * i + 2
    if left < n and data[i] < data[left]:
        largest = left
    if right < n and data[largest] < data[right]:
        largest = right
    if largest != i:
        data[i], data[largest] = data[largest], data[i]
        heapify(data, n, largest)

def heap_sort(data):
    n = len(data)
    for i in range(n - 1, -1, -1):
        heapify(data, n, i)
    for i in range(n - 1, 0, -1):
        data[i], data[0] = data[0], data[i]
        heapify(data, i, 0)

Java

public void heap_sort(int arr[]){
   int n = arr.length;
   for (int i = n / 2 - 1; i >= 0; i--)
      heapify(arr, n, i);
   for (int i = n - 1; i > 0; i--) {
      int temp = arr[0];
      arr[0] = arr[i];
      arr[i] = temp;
      heapify(arr, i, 0);
   }
}
public void heapify(int arr[], int n, int i){
   int largest = i, l = 2 * i + 1, r = 2 * i + 2;
   if (l < n && arr[l] > arr[largest])
      largest = l;
   if (r < n && arr[r] > arr[largest])
      largest = r;
   if (largest != i) {
      int swap = arr[i];
      arr[i] = arr[largest];
      arr[largest] = swap;
      heapify(arr, n, largest);
   }
}

FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain

Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom

33 Dec 17, 2022
Python Sorted Container Types: Sorted List, Sorted Dict, and Sorted Set

Python Sorted Containers Sorted Containers is an Apache2 licensed sorted collections library, written in pure-Python, and fast as C-extensions. Python

Grant Jenks 2.8k Jan 04, 2023
It is a platform that implements some path planning algorithms.

PathPlanningAlgorithms It is a platform that implements some path planning algorithms. Main dependence: python3.7, opencv4.1.1.26 (for image show) Tip

5 Feb 24, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
A fast python implementation of the SimHash algorithm.

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated

Hybrid Theory 19 Dec 15, 2022
8 Puzzle with A* , Greedy & BFS Search in Python

8_Puzzle 8 Puzzle with A* , Greedy & BFS Search in Python Python Install Python from here. Pip Install pip from here. How to run? 🚀 Install 8_Puzzle

I3L4CK H4CK3l2 1 Jan 30, 2022
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

89 Nov 14, 2022
A Python library for simulating finite automata, pushdown automata, and Turing machines

Automata Copyright 2016-2021 Caleb Evans Released under the MIT license Automata is a Python 3 library which implements the structures and algorithms

Caleb Evans 219 Dec 12, 2022
Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors.

RiskyPortfolioGenerator Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors. Working in a group, we crea

Victoria Zhao 2 Jan 13, 2022
ROS Basics and TurtleSim

Homework 1: Turtle Control Package Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the

Anna Garverick 1 Nov 22, 2021
Rover. Finding the shortest pass by Dijkstra’s shortest path algorithm

rover Rover. Finding the shortest path by Dijkstra’s shortest path algorithm Задача Вы — инженер, проектирующий роверы-беспилотники. Вам надо спроекти

1 Nov 11, 2021
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
Algorithms and utilities for SAR sensors

WARNING: THIS CODE IS NOT READY FOR USE Sarsen Algorithms and utilities for SAR sensors Objectives Be faster and simpler than ESA SNAP and cloud nativ

B-Open 201 Dec 27, 2022
Supplementary Data for Evolving Reinforcement Learning Algorithms

evolvingrl Supplementary Data for Evolving Reinforcement Learning Algorithms This dataset contains 1000 loss graphs from two experiments: 500 unique g

John Co-Reyes 42 Sep 21, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API

Mozaffar Etezadifar 3 Mar 19, 2022
A simple library for implementing common design patterns.

PyPattyrn from pypattyrn.creational.singleton import Singleton class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!

1.7k Jan 01, 2023
A GUI visualization of QuickSort algorithm

QQuickSort A simple GUI visualization of QuickSort algorithm. It only uses PySide6, it does not have any other external dependency. How to run Install

Jaime R. 2 Dec 24, 2021
TikTok X-Gorgon & X-Khronos Generation Algorithm

TikTok X-Gorgon & X-Khronos Generation Algorithm X-Gorgon and X-Khronos headers are required to call tiktok api. I will provide you API as rental or s

TikTokMate 31 Dec 01, 2022
SortingAlgorithmVisualization - A place for me to learn about sorting algorithms

SortingAlgorithmVisualization A place for me to learn about sorting algorithms.

1 Jan 15, 2022