An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Overview

Semisupervised Multitask Learning

This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch.

This code primarily deals with the tasks of sematic segmentation, instance segmentation, depth prediction learned in a multi-task setting (with a shared encoder) on a synthetic dataset and then adapted to another dataset with a domain shift. Specifically for this implementation the aim is to learn the three tasks on the Cityscapes Dataset, then adapt and evaluate performance in a fully unsupervised or a semi-supervised setting on the IDD Dataset.

The architecture used for the semantic and instance segmentation model is taken from Panoptic Deeplab[2]. While a choice for the depth decoder is offered between BTS[3] and FCRN-Depth[4].

Usage

The following commands can be used to run the codebase, please make sure to see the respective papers for more details.

  1. To train the base encoder on the Cityscapes (or any other dataset with appropriate modifications) use the following command. Additional flags can also be set as required:

    python base_trainer.py --name BaseRun --cityscapes_dir /path/to/cityscapes

  2. Then train the CCR Regularizer as proposed in UM-Adapt with the following command:

    python ccr_trainer.py --base_name BaseRun --cityscapes_dir /path/to/cityscapes --hed_path /path/to/pretrained/HED-Network

  3. Unsupervised adaptation to IDD can now be performed using:

    python idd_adapter.py --name AdaptIDD --base_name BaseRun --cityscapes_dir /path/to/cityscapes --idd_dir /path/to/idd --hed_path /path/to/pretrained/HED-Network

  4. Further optional semi-supervised fine-tuning can be done using:

    python idd_supervised.py --name SupervisedIDD --base_name BaseRun --idd_name AdaptIDD --idd_epoch 10 --idd_dir /path/to/idd --hed_path /path/to/pretrained/HED-Network --supervised_pct 0.5

The code can generally be modified to suit any dataset as required, the base architectures of different decoders as well as the shared encoders can also be altered as needed.

References

If you find this code helpful in your research, please consider citing the following papers.

[1]  @inproceedings{Kundu_2019_ICCV,
        author = {Kundu, Jogendra Nath and Lakkakula, Nishank and Babu, R. Venkatesh},
        title = {UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation},
        booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
        month = {October},
        year = {2019}
    }
[2]  @inproceedings{cheng2020panoptic,
        author={Cheng, Bowen and Collins, Maxwell D and Zhu, Yukun and Liu, Ting and Huang, Thomas S and Adam, Hartwig and Chen, Liang-Chieh},
        title={Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation},
        booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2020}
    }
[3]  @article{lee2019big,
        title={From big to small: Multi-scale local planar guidance for monocular depth estimation},
        author={Lee, Jin Han and Han, Myung-Kyu and Ko, Dong Wook and Suh, Il Hong},
        journal={arXiv preprint arXiv:1907.10326},
        year={2019}
}
[4]  @inproceedings{Xie_ICCV_2015,
         author = {Saining Xie and Zhuowen Tu},
         title = {Holistically-Nested Edge Detection},
         booktitle = {IEEE International Conference on Computer Vision},
         year = {2015}
     }
[5]  @misc{pytorch-hed,
         author = {Simon Niklaus},
         title = {A Reimplementation of {HED} Using {PyTorch}},
         year = {2018},
         howpublished = {\url{https://github.com/sniklaus/pytorch-hed}}
    }

If you use either of Cityscapes or IDD datasets, consider citing them

@inproceedings{Cordts2016Cityscapes,
    title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
    author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
    booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2016}
}
@article{DBLP:journals/corr/abs-1811-10200,,
    title={IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments},
    author = {Varma, Girish and Subramanian, Anbumani and Namboodiri, Anoop and Chandraker, Manmohan and Jawahar, C.V.}
    journal={arXiv preprint arXiv:1811.10200},
    year={2018}

Finally, if you use the Xception backbone, please consider citing

@inproceedings{deeplabv3plus2018,
    title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
    author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
    booktitle={ECCV},
    year={2018}
}

Acknowledgements

Utility functions from many wonderful open-source projects were used, I would like to especially thank the authors of:

Owner
Abhinav Atrishi
Abhinav Atrishi
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Xintao 1.4k Dec 25, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023