Speech Recognition Database Management with python

Overview

Speech Recognition Database Management

The main aim of this project is to recognize voice of the user as input and convert that input voice into the text form.

Libraries Used Inside the Project

We have used Speech Recognition module of Python to accomplish this mission. Inside it we have modules like PyAudio which helps us to play and record audio.

Libraries

Also, we have used the MySQL connector module for connecting our Python program to our MySQL database.

2

Libraries Created During the Project

We have created a library named MySQLvoice which helps our Artificial Intelligence to manage and organise the databases.

3

The main aim of this module is to select the keywords from the given input. After selecting the keywords our Artificial Intelligence start working on the database and provide the required results.

How We Converted the Voice into Text

For getting the voice input of the user we have used the pre-build library of Python which is Speech Recognition. We have taken the voice input from the systems microphone and stored it into a variable. After that we used the recognize function of Speech Recognition to recognize what user said and stored it into a variable.

After recognizing we printed the input into the text form to check the durability of our program.

4

Description

Using MySQLvoice library user doesn't need to know SQL database languages to make any changes or to know anything about their database. We have announced eight new keywords as follows:

5

How to Install and Run the Project

Once the MySQLvoice pip package is uploaded on PyPI, you can directly write "pip install MySQLvoice" in your respective terminals to install it in your system. After installing you can import it in your Python compiler and get benefited.

How to Use the Project

This Project is limited to MySQL Database operations but it can be used in all regions of the world for handeling databases as it is very easy to develop for regional languages. We are mostly working in common English language but it has the capability to be coded for any languages spoken in the world like Kannada, Korean, Japenese, Hindi, Gujrati etc. It will help the Non-Technical person to handle databases with ease.

Advantages

  1. It supports multitasking.

  2. Users don’t need to code.

  3. Can be used in any sector of industry where we employ databases.

  4. It saves time of the user which will enhance work procedure and economy.

Disadvantages

  1. May fail to work during hardware failure.

  2. May take time in data training of speech recognition.

  3. Noise pollution can hamper the quality of voice input.

  4. The improper pronunciation can effect the voice input.

Future Plans

We dream to include the regional languages (such as Kannada, Gujarati, Marathi etc.) which will help non-technical person to handle their databases.

We have a plan to include this developer tool features to small scale industries to enhance their productivity with this time saving database handling.

Conclusion

This project will help a lot of indutries and business as they are able to manage and organize their databases with thier voice. Also it will reduce the work load to a greater extent.

This project is just a small example of Artificial Intelligence related Database Management.

This project was jointly created by:

6

Owner
Abhishek Kumar Jha
Abhishek Kumar Jha
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022