SAMO: Streaming Architecture Mapping Optimisation

Overview

SAMO: Streaming Architecture Mapping Optimiser

The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model onto an FPGA platform for Streaming Architecture frameworks. Both a Simulated Annealing and Brute Force optimiser are implemented. We currently support the following frameworks:

Installation

You can install this package using:

python -m pip install samo

Usage

The general usage of the SAMO tool can be seen by running python -m samo --help.

Example platform configurations are given in the platforms directory and example CNN models can be generated by running python scripts/generate_networks.py.

FINN

In order to run the optimiser with the FINN toolflow, the first step is to download the following fork

git clone https://github.com/Yu-Zhewen/finn.git
cd finn
git checkout 4cc0b6fdae2f5c06f0b5bcc6fa45fba4d8b69111

As FINN requires docker, set SAMO_DIR to the path of SAMO in run_docker.sh, before entering the docker.

bash run_docker.sh

Within the docker, generate the FINN-ONNX through the following steps.

cd ../samo
cp models/${network}.onnx outputs/saved/finn/${network}.onnx
cp ../finn/notebooks/samo/config/${network}.json ../finn/notebooks/samo/config.json
jupyter nbconvert --to notebook --execute ../finn/notebooks/samo/pre_optimiser_steps.ipynb
mv ../finn/notebooks/samo/pre_optimiser_steps.nbconvert.ipynb outputs/saved/finn/${network}_pre_optimiser_steps.nbconvert.ipynb

To optimise the CNN model in the FINN-ONNX format, you need to do:

python -m samo --optimiser annealing --model outputs/saved/finn/${network}_pre_optimiser.onnx  \
    --backend finn --platform platforms/zedboard.json \
    --output-path outputs/saved/finn/${network}_post_optimiser.onnx

Finally, the following command is used to generate the hardware.

jupyter nbconvert --to notebook --execute ../finn/notebooks/samo/post_optimiser_steps.ipynb

HLS4ML

This tool can be used to generate optimised designs for the HLS4ML framework. SAMO tunes the reuse-factor for layers of the CNN model, and generates a Resource driven design.

To optimise a keras model for a given platform, run the following:

python -m samo --optimiser annealing --model models/model.keras \
    --backend hls4ml --platform platforms/zedboard.json \
    --output-path outputs/model_hls4ml.json

The previous command generates a configuration file (outputs/model_hls4ml.json), which can be used by the HLS4ML to generate hardware. To do this, you will need to use the HLS4ML API to convert this configuration file into a HLS project.

import hls4ml
from tensorflow import keras

# load the configuration
with open("outputs/model_hls4ml.json", "r") as f:
    config = json.load(f)

# load the platform
with open("platforms/zedboard.json", "r") as f:
    platform = json.load(f)

# load the keras model
model = keras.models.load_model("models/model.keras")

# create the hls model
hls_model = hls4ml.converters.convert_from_keras_model(model, hls_config=config,
        output_dir="outputs/hls4ml_prj",  io_type="io_stream", fpga_part=platform["part"])

# build the HLS project
hls_model.build(csim=True, cosim=True)

Feel free to post an issue if you have any questions or problems!

Owner
Alexander Montgomerie-Corcoran
PhD Student at Imperial College London
Alexander Montgomerie-Corcoran
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
SFD implement with pytorch

SÂłFD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021