CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

Overview

CaFM-pytorch ICCV ACCEPT

Introduction of dataset VSD4K

Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city. Each category is consisted of various video length, including: 15s, 30s, 45s, etc. For a specific category and its specific video length, there are 3 scaling factors: x2, x3 and x4. In each file, there are HR images and its corresponding LR images. 1-n are training images , n - (n + n/10) are test images. (we select test image 1 out of 10). The dataset can be obtained from [https://pan.baidu.com/s/14pcsC7taB4VAa3jvyw1kog] (passward:u1qq) and google drive [https://drive.google.com/drive/folders/17fyX-bFc0IUp6LTIfTYU8R5_Ot79WKXC?usp=sharing].

e.g.:game 15s
dataroot_gt: VSD4K/game/game_15s_1/DIV2K_train_HR/00001.png
dataroot_lqx2: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X4/00001_x4.png

Proposed method

Introduction

Our paper "Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation" has been submitted to 2021 ICCV. we aim to use super resolution network to improve the quality of video delivery recently. The whole precedure is shown below. We devide the whole video into several chunks and apply a joint training framework with Content aware Feature Module(CaFM) to train each chunk simultaneously. With our method, each video chunk only requires less than 1% of original parameters to be streamed, achieving even better SR performance. We conduct extensive experiments across various SR backbones(espcn,srcnn,vdsr,edsr16,edsr32,rcan), video time length(15s-10min), and scaling factors(x2-x4) to demonstrate the advantages of our method. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

Figure 1. The whole procedure of adopting content-aware DNNs for video delivery. A video is first divided into several chunks and the server trains one model for each chunk. Then the server delivers LR video chunks and models to client. The client runs the inference to super-resolve the LR chunks and obtain the SR video.

Quantitative results

We show our quantitative results in the table below. For simplicity, we only demonstrate the results on game and vlog datasets. We compare our method M{1-n} with M0 and S{1-n}. The experiments are conducted on EDSR.

  • M0: a EDSR without CaFM module, train on whole video.
  • Si: a EDSR without a CaFM module, train on one specific chunk i.
  • M{1-n}ours: a EDSR with n CaFM modules, train on n chunks simultaneously.
Dataset Game15s Game30s Game45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 42.24 35.88 33.44 41.84 35.54 33.05 42.11 35.75 33.33
S{1-n} 42.82 36.42 34.00 43.07 36.73 34.17 43.22 36.72 34.32
M{1-n} Ours 43.13 37.04 34.47 43.37 37.12 34.58 43.46 37.31 34.79
Dataset Vlog15s Vlog30s Vlog45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 48.87 44.51 42.58 47.79 43.38 41.24 47.98 43.58 41.53
S{1-n} 49.10 44.80 42.83 48.20 43.68 41.55 48.48 44.12 42.12
M{1-n} Ours 49.30 45.03 43.11 48.55 44.15 42.16 48.61 44.24 42.39

Quatitative results

We show the quatitative results in the figure below.

  • bicubic: SR images are obtained by bicubic
  • H.264/H.265: use the default setting of FFmpeg to generate the H.264 and H.265 videos

Dependencies

  • Python >= 3.6
  • Torch >= 1.0.0
  • opencv-python
  • numpy
  • skimage
  • imageio
  • matplotlib

Quickstart

M0 demotes the model without Cafm module which is trained on the whole dataset. S{1-n} denotes n models that trained on n chunks of video. M{1-n} demotes one model along with n Cafm modules that trained on the whole dataset. M{1-n} is our proposed method.

How to set data_range

n is the total frames in a video. We select one test image out of 10 training images. Thus, in VSD4K, 1-n is its training dataset, n-(n+/10) is the test dataset. Generally, we set 5s as the length of one chunk. Hence, 15s consists 3 chunks, 30s consists 6 chunks, etc.

Video length(train images + test images) chunks M0/M{1-n} S1 S2 S3 S4 S5 S6 S7 S8 S9
15s(450+45) 3 1-450/451-495 1-150/451-465 151-300/466-480 301-450/481-495 - - - - - -
30s(900+95) 6 1-900/901-990 1-150/901-915 151-300/916-930 301-450/931-945 451-600/946-960 601-750/961-975 751-900/976-990 - - -
45s(1350+135) 9 1-1350/1351-1485 1-150/1351-1365 151-300/1366-1380 301-450/1381-1395 451-600/1396-1410 601-750/1411-1425 751-900/1426-1440 901-1050/1441-1455 1051-1200/1456-1470 1201-1350/1471-1485

Train

For simplicity, we only demonstrate how to train 'game_15s' by our method.

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

You can apply our method on your own images. Place your HR images under YOURS/DIV2K_train_HR/, with the name start from 00001.png. Place your corresponding LR images under YOURS/DIV2K_train_LR_bicubic/X2, with the name start from 00001_x2.png.

e.g.:
dataroot_gt: YOURS/DIV2K_train_HR/00001.png
dataroot_lqx2: YOURS/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: YOURS/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: YOURS/DIV2K_train_LR_bicubic/X4/00001_x4.png
  • The running command is like:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
  • For example:
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

Test

For simplicity, we only demonstrate how to run 'game' category of 15s. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale {scale factor} --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --test_only --pre_train {path to pretrained model} --data_range {train_range} --{is15s/is30s/is45s} --cafm  --dir_data {path of data} --use_cafm --segnum 3
e.g.:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale 4 --model EDSR --test_only --pre_train /home/CaFM-pytorch/experiment/edsr_x2_p48_game_15s_1_seg1-3_batch64_k1_g64/model/model_best.pt --data_range 1-150 --is15s --cafm  --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --segnum 3

Additional

We also demonstrate our method in vimeo dataset and HEVC test sequence. These datasets and all trained models will be released as soon as possible. By the way, we add SEFCNN.py into our backbone list which is suggested by reviewer.The code will be updated regularly.

Acknowledgment

AdaFM proposed a closely related method for continual modulation of restoration levels. While they aimed to handle arbitrary restoration levels between a start and an end level, our goal is to compress the models of different chunks for video delivery. The reader is encouraged to review their work for more details. Please also consider to cite AdaFM if you use the code. [https://github.com/hejingwenhejingwen/AdaFM]

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022