Analyze, visualize and process sound field data recorded by spherical microphone arrays.

Overview

Sound Field Analysis toolbox for Python

Mentioned in Awesome Python for Scientific Audio icon_travis icon_appveyor

The sound_field_analysis toolbox (short: sfa) is a Python port of the Sound Field Analysis Toolbox (SOFiA) toolbox, originally by Benjamin Bernschütz [1]. The main goal of the sfa toolbox is to analyze, visualize and process sound field data recorded by spherical microphone arrays. Furthermore, various types of test-data may be generated to evaluate the implemented functions. It is an essential building block of ReTiSAR, an implementation of real time binaural rendering of spherical microphone array data.

Requirements

We use Python 3.9 for development. Chances are that earlier version will work too but this is currently untested.

The following external libraries are required:

Installation

For performance and convenience reasons we highly recommend to use Conda (miniconda for simplicity) to manage your Python installation. Once installed, you can use the following steps to receive and use sfa, depending on your use case:

  • From PyPI / pip:

    Install into an existing environment (without example Jupyter Notebooks):
    pip install sound_field_analysis
  • By cloning (or downloading) the repository and setting up a new environment:

    git clone https://github.com/AppliedAcousticsChalmers/sound_field_analysis-py.git
    cd sound_field_analysis-py/
    Create a new Conda environment from the specified dependencies:
    conda env create --file environment.yml --force
    Activate the environment:
    source activate sfa
    Optional: Install additional dependencies for development purposes (locally run Jupyter Notebooks with example, run tests, generate documentation):
    conda env update --file environment_dev.yml

Documentation

https://appliedacousticschalmers.github.io/sound_field_analysis-py/ and offline as PDF.

Note: Verify the version number of the documentation to see if it reflects the latest changes.

Examples

The following examples are available as Jupyter Notebooks, either statically on GitHub or interactively on nbviewer. You can of course also simply download the examples and run them locally!

Exp1: Ideal plane wave

Ideal unity plane wave simulation and 3D plot.

View interactively on nbviewer

AE1_img

Exp2: Measured plane wave

A measured plane wave from AZ=180°, EL=90° in the anechoic chamber using a cardioid mic.

View interactively on nbviewer

AE2_img

Exp4: Binaural rendering

Render a spherical microphone array impulse response measurement binaurally. The example shows examples for loading miro or SOFA files.

View interactively on nbviewer

AE4_img

Version history

unreleased
  • Update miro_to_struct() to work in modern Matlab versions
  • Update MIRO struct loading for SphericalGrid (forgiving empty radius and quadrature weights)
  • Add optional automatic limitation of y-axis range in plot2D()
  • Implement frac_oct_smooth_fd() with fractional octave smoothing of magnitude spectra
  • Add option for fractional octave smoothing of magnitude spectra to plot2D()
  • Fix Exp4 to replace removed deg2rad and rad2deg utility functions
v2021.2.4
  • Implement option to use real spherical harmonic basis functions
  • Update Exp4 to optionally utilize real spherical harmonics
  • Fix testing of spherical harmonics against reference Matlab implementation
  • Add testing for generation of real spherical harmonics
  • Add evaluation of performance for generation of complex and real spherical harmonics
  • Add evaluation of performance for spatial sound field decomposition
  • Remove deg2rad and rad2deg utility functions (replaced by NumPy equivalent)
  • Update Conda environment setup to combine all development dependencies
  • Update online and offline documentation
v2021.1.12
  • Update MIRO struct loading for SphericalGrid (quadrature weights are now optional)
  • Fix to prevent Python 3.8 syntax warnings
  • Improve Exp4 (general code structure and utilizing Spherical Head Filter and Spherical Harmonics Tapering)
v2020.1.30
  • Update README and PyPI package
v2019.11.6
  • Update internal documentation and string formatting
v2019.8.15
  • Change version number scheme to CalVer
  • Improve Exp4
  • Update read_SOFA_file()
  • Update 2D plotting functions
  • Improve write_SSR_IRs()
  • Improve Conda environment setup for Jupyter Notebooks
  • Update miro_to_struct()
2019-07-30 (v0.9)
  • Implement SOFA import
  • Update Exp4 to contain SOFA import
  • Delete obsolete Exp3
  • Add named tuple HRIRSignal
  • Implement cart2sph() and sph2cart() utility functions
  • Add Conda environment file for convenient installation of required packages
2019-07-11 (v0.8)
  • Implement Spherical Harmonics coefficients tapering
  • Update Spherical Head Filter to consider tapering
2019-06-17 (v0.7)
  • Implement Bandwidth Extension for Microphone Arrays (BEMA)
  • Edit read_miro_struct(), named tuple ArraySignal and miro_to_struct.m to load center measurements
2019-06-11 (v0.6)
2019-05-23 (v0.5)
  • Implement Spherical Head Filter
  • Implement Spherical Fourier Transform using pseudo-inverse
  • Extract real time capable spatial Fourier transform
  • Extract reversed m index function (Update Exp4)

Contribute

See CONTRIBUTE.rst for full details.

License

This software is licensed under the MIT License (see LICENSE for full details).

References

The sound_field_analysis toolbox is based on the Matlab/C++ Sound Field Analysis Toolbox (SOFiA) toolbox by Benjamin Bernschütz. For more information you may refer to the original publication:

[1] Bernschütz, B., Pörschmann, C., Spors, S., and Weinzierl, S. (2011). SOFiA Sound Field Analysis Toolbox. Proceedings of the ICSA International Conference on Spatial Audio

The Lebedev grid generation was adapted from an implementation by Richard P. Muller.

Owner
Division of Applied Acoustics at Chalmers University of Technology
Division of Applied Acoustics at Chalmers University of Technology
Implicit neural differentiable FM synthesizer

Implicit neural differentiable FM synthesizer The purpose of this project is to emulate arbitrary sounds with FM synthesis, where the parameters of th

Andreas Jansson 34 Nov 06, 2022
Converting UGG files from Rode Wireless Go II transmitters (unsompressed recordings) to WAV format

Rode_WirelessGoII_UGG2wav Converting UGG files from Rode Wireless Go II transmitters (uncompressed recordings) to WAV format Story I backuped the .ugg

Ján Mazanec 31 Dec 22, 2022
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

5 Oct 07, 2022
❤️ Hi There Im Cozmo Music Bot A next gen powerful telegram group Music bot for get your Songs and music @Venuja_Sadew

🎵 Cozmo MUSIC 🎵 Cozmo Music is a Music powerfull bot for playing music on telegram voice chat groups. Requirements FFmpeg NodeJS nodesource.com Pyth

Venuja Sadew 3 Jan 08, 2022
Dataset and baseline code for the VocalSound dataset (ICASSP2022).

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition Introduction Citing Download VocalSound Dataset Details Baseline Experiment Contact

Yuan Gong 58 Jan 03, 2023
An audio digital processing toolbox based on a workflow/pipeline principle

AudioTK Audio ToolKit is a set of audio filters. It helps assembling workflows for specific audio processing workloads. The audio workflow is split in

Matthieu Brucher 238 Oct 18, 2022
Tradutor de um arquivo MIDI para ser usado em um simulador RISC-V(RARS)

Tradutor_MIDI-RISC-V Tradutor de um arquivo MIDI para ser usado em um simulador RISC-V(RARS) *O resultado sai com essa formatação: nota,duração,nota,d

Gabriel B. G. 4 Sep 02, 2022
Python game programming in Jupyter notebooks.

Jupylet Jupylet is a Python library for programming 2D and 3D games, graphics, music and sound synthesizers, interactively in a Jupyter notebook. It i

Nir Aides 178 Dec 09, 2022
Pianote - An application that helps musicians practice piano ear training

Pianote Pianote is an application that helps musicians practice piano ear traini

3 Aug 17, 2022
Oliva music bot help to play vc music

OLIVA V2 🎵 Requirements 📝 FFmpeg NodeJS nodesource.com Python 3.7+ PyTgCalls Commands 🛠 For all in group /play - reply to youtube url or song file

SOUL々H҉A҉C҉K҉E҉R҉ 2 Oct 22, 2021
An 8D music player made to enjoy Halloween this year!🤘

HAPPY HALLOWEEN buddy! Split Player Hello There! Welcome to SplitPlayer... Supposed To Be A 8DPlayer.... You Decide.... It can play the ordinary audio

Akshat Kumar Singh 1 Nov 04, 2021
Minimal command-line music player written in Python

pyms Minimal command-line music player written in Python. Designed with elegance and minimalism. Resizes dynamically with your terminal. Dependencies

12 Sep 23, 2022
Mousai is a simple application that can identify song like Shazam

Mousai is a simple application that can identify song like Shazam. It saves the artist, album, and title of the identified song in a JSON file.

Dave Patrick 662 Jan 07, 2023
Scalable audio processing framework written in Python with a RESTful API

TimeSide : scalable audio processing framework and server written in Python TimeSide is a python framework enabling low and high level audio analysis,

Parisson 340 Jan 04, 2023
Real-time audio visualizations (spectrum, spectrogram, etc.)

Friture Friture is an application to visualize and analyze live audio data in real-time. Friture displays audio data in several widgets, such as a sco

Timothée Lecomte 700 Dec 31, 2022
:notes: Cross-platform music player

Exaile Exaile is a music player with a simple interface and powerful music management capabilities. Features include automatic fetching of album art,

Exaile 327 Dec 19, 2022
Simple discord bot by @merive 🤖

Parzibot Powerful and Useful Discord Bot on Python. The source code of the bot is available to everyone. Parzibot uses English language. This is free

merive_ 3 Dec 28, 2022
Library for working with sound files of the format: .ogg, .mp3, .wav

Library for working with sound files of the format: .ogg, .mp3, .wav. By work is meant - playing sound files in a straight line and in the background, obtaining information about the sound file (auth

Romanin 2 Dec 15, 2022
A lightweight yet powerful audio-to-MIDI converter with pitch bend detection

Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence La

Spotify 1.4k Jan 01, 2023
Audio fingerprinting and recognition in Python

dejavu Audio fingerprinting and recognition algorithm implemented in Python, see the explanation here: How it works Dejavu can memorize audio by liste

Will Drevo 6k Jan 06, 2023