MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

Overview

MoViNet-pytorch

Open In Colab Paper

Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition.
Authors: Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong (Google Research)
[Authors' Implementation]

Stream Buffer

stream buffer

Clean stream buffer

It is required to clean the buffer after all the clips of the same video have been processed.

model.clean_activation_buffers()

Usage

Open In Colab
Click on "Open in Colab" to open an example of training on HMDB-51

installation

pip install git+https://github.com/Atze00/MoViNet-pytorch.git

How to build a model

Use causal = True to use the model with stream buffer, causal = False will use standard convolutions

from movinets import MoViNet
from movinets.config import _C

MoViNetA0 = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
MoViNetA1 = MoViNet(_C.MODEL.MoViNetA1, causal = True, pretrained = True )
...
Load weights

Use pretrained = True to use the model with pretrained weights

    """
    If pretrained is True:
        num_classes is set to 600,
        conv_type is set to "3d" if causal is False, "2plus1d" if causal is True
        tf_like is set to True
    """
model = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
model = MoViNet(_C.MODEL.MoViNetA0, causal = False, pretrained = True )

Training loop examples

Training loop with stream buffer

def train_iter(model, optimz, data_load, n_clips = 5, n_clip_frames=8):
    """
    In causal mode with stream buffer a single video is fed to the network
    using subclips of lenght n_clip_frames. 
    n_clips*n_clip_frames should be equal to the total number of frames presents
    in the video.
    
    n_clips : number of clips that are used
    n_clip_frames : number of frame contained in each clip
    """
    
    #clean the buffer of activations
    model.clean_activation_buffers()
    optimz.zero_grad()
    for i, data, target in enumerate(data_load):
        #backward pass for each clip
        for j in range(n_clips):
          out = F.log_softmax(model(data[:,:,(n_clip_frames)*(j):(n_clip_frames)*(j+1)]), dim=1)
          loss = F.nll_loss(out, target)/n_clips
          loss.backward()
        optimz.step()
        optimz.zero_grad()
        
        #clean the buffer of activations
        model.clean_activation_buffers()

Training loop with standard convolutions

def train_iter(model, optimz, data_load):

    optimz.zero_grad()
    for i, (data,_ , target) in enumerate(data_load):
        out = F.log_softmax(model(data), dim=1)
        loss = F.nll_loss(out, target)
        loss.backward()
        optimz.step()
        optimz.zero_grad()

Pretrained models

Weights

The weights are loaded from the tensorflow models released by the authors, trained on kinetics.

Base Models

Base models implement standard 3D convolutions without stream buffers.

Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape
MoViNet-A0-Base 72.28 90.92 50 x 172 x 172
MoViNet-A1-Base 76.69 93.40 50 x 172 x 172
MoViNet-A2-Base 78.62 94.17 50 x 224 x 224
MoViNet-A3-Base 81.79 95.67 120 x 256 x 256
MoViNet-A4-Base 83.48 96.16 80 x 290 x 290
MoViNet-A5-Base 84.27 96.39 120 x 320 x 320
Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape**
MoViNet-A0-Stream 72.05 90.63 50 x 172 x 172
MoViNet-A1-Stream 76.45 93.25 50 x 172 x 172
MoViNet-A2-Stream 78.40 94.05 50 x 224 x 224

**In streaming mode, the number of frames correspond to the total accumulated duration of the 10-second clip.

*Accuracy reported on the official repository for the dataset kinetics 600, It has not been tested by me. It should be the same since the tf models and the reimplemented pytorch models output the same results [Test].

I currently haven't tested the speed of the streaming models, feel free to test and contribute.

Status

Currently are available the pretrained models for the following architectures:

  • MoViNetA1-BASE
  • MoViNetA1-STREAM
  • MoViNetA2-BASE
  • MoViNetA2-STREAM
  • MoViNetA3-BASE
  • MoViNetA3-STREAM
  • MoViNetA4-BASE
  • MoViNetA4-STREAM
  • MoViNetA5-BASE
  • MoViNetA5-STREAM

I currently have no plans to include streaming version of A3,A4,A5. Those models are too slow for most mobile applications.

Testing

I recommend to create a new environment for testing and run the following command to install all the required packages:
pip install -r tests/test_requirements.txt

Citations

@article{kondratyuk2021movinets,
  title={MoViNets: Mobile Video Networks for Efficient Video Recognition},
  author={Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Matthew Brown, and Boqing Gong},
  journal={arXiv preprint arXiv:2103.11511},
  year={2021}
}
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022