Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Overview

I2V-GAN

This repository is the official Pytorch implementation for ACMMM2021 paper
"I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Traffic I2V Example:

compair_gif01

Monitoring I2V Example:

compair_gif02

Flower Translation Example:

compair_gif03

Introduction

Abstract

Human vision is often adversely affected by complex environmental factors, especially in night vision scenarios. Thus, infrared cameras are often leveraged to help enhance the visual effects via detecting infrared radiation in the surrounding environment, but the infrared videos are undesirable due to the lack of detailed semantic information. In such a case, an effective video-to-video translation method from the infrared domain to the visible counterpart is strongly needed by overcoming the intrinsic huge gap between infrared and visible fields.
Our work propose an infrared-to-visible (I2V) video translation method I2V-GAN to generate fine-grained and spatial-temporal consistent visible light video by given an unpaired infrared video.
The backbone network follows Cycle-GAN and Recycle-GAN.
compaire

Technically, our model capitalizes on three types of constraints: adversarial constraint to generate synthetic frame that is similar to the real one, cyclic consistency with the introduced perceptual loss for effective content conversion as well as style preservation, and similarity constraint across and within domains to enhance the content and motion consistency in both spatial and temporal spaces at a fine-grained level.

network-all

IRVI Dataset

Click here to download IRVI dataset from Baidu Netdisk. Access code: IRVI.

data_samples

Data Structure

SUBSET TRAIN TEST TOTAL FRAME
Traffic 17000 1000 18000
Mornitoring sub-1 1384 347 1731 6352
sub-2 1040 260 1300
sub-3 1232 308 1540
sub-4 672 169 841
sub-5 752 188 940

Installation

The code is implemented with Python(3.6) and Pytorch(1.9.0) for CUDA Version 11.2

Install dependencies:
pip install -r requirements.txt

Usage

Train

python train.py --dataroot /path/to/dataset \
--display_env visdom_env_name --name exp_name \
--model i2vgan --which_model_netG resnet_6blocks \
--no_dropout --pool_size 0 \
--which_model_netP unet_128 --npf 8 --dataset_mode unaligned_triplet

Test

python test.py --dataroot /path/to/dataset \
--which_epoch latest --name exp_name --model cycle_gan \
--which_model_netG resnet_6blocks --which_model_netP unet_128 \
--dataset_mode unaligned --no_dropout --loadSize 256 --resize_or_crop crop

Citation

If you find our work useful in your research or publication, please cite our work:

@inproceedings{I2V-GAN2021,
  title     = {I2V-GAN: Unpaired Infrared-to-Visible Video Translation},
  author    = {Shuang Li and Bingfeng Han and Zhenjie Yu and Chi Harold Liu and Kai Chen and Shuigen Wang},
  booktitle = {ACMMM},
  year      = {2021}
}

Acknowledgements

This code borrows heavily from the PyTorch implementation of Cycle-GAN and Pix2Pix and RecycleGAN.
A huge thanks to them!

@inproceedings{CycleGAN2017,
  title     = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author    = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle = {ICCV},
  year      = {2017}
}

@inproceedings{Recycle-GAN2018,
  title     = {Recycle-GAN: Unsupervised Video Retargeting},
  author    = {Aayush Bansal and Shugao Ma and Deva Ramanan and Yaser Sheikh},
  booktitle = {ECCV},
  year      = {2018}
}
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022