Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

Related tags

Deep LearningSSAN
Overview

SSAN

Introduction

This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
SSAN (Structured Self-Attention Network) is a novel extension of Transformer to effectively incorporate structural dependencies between input elements. And in the scenerio of document-level relation extraction, we consider the structure of entities. Specificly, we propose a transformation module, that produces attentive biases based on the structure prior so as to adaptively regularize the attention flow within and throughout the encoding stage. We achieve SOTA results on several document-level relation extraction tasks.
This implementation is adapted based on huggingface transformers, the key revision is how we extend the vanilla self-attention of Transformers, you can find the SSAN model details in ./model/modeling_bert.py#L267-L280. You can also find our paddlepaddle implementation in here.

Tagging Strategy

Requirements

  • python3.6, transformers==2.7.0
  • This implementation is tested on a single 32G V100 GPU with CUDA version=10.2 and Driver version=440.33.01.

Prepare Model and Dataset

  • Download pretrained models into ./pretrained_lm. For example, if you want to reproduce the results based on RoBERTa Base, you can download and keep the model files as:
    pretrained_lm
    └─── roberta_base
         ├── pytorch_model.bin
         ├── vocab.json
         ├── config.json
         └── merges.txt

Note that these files should correspond to huggingface transformers of version 2.7.0. Or the code will automatically download from s3 into your --cache_dir.

  • Download DocRED dataset into ./data, including train_annotated.json, dev.json and test.json.

Train

  • Choose your model and config the script:
    Choose --model_type from [roberta, bert], choose --entity_structure from [none, decomp, biaffine]. For SciBERT, you should set --model_type as bert, and then add do_lower_case action.
  • Then run training script:
sh train.sh

checkpoints will be saved into ./checkpoints, and the best threshold for relation prediction will be searched on dev set and printed when evaluation.

Predict

Set --checkpoint and --predict_thresh then run script:

sh predict.sh

The result will be saved as ${checkpoint}/result.json.
You can compress and upload it to the official competition leaderboard at CodaLab.

zip result.zip result.json

Citation (Arxiv version, waiting for the official proceeding.)

If you use any source code included in this project in your work, please cite the following paper:

@misc{xu2021entity,
      title={Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction}, 
      author={Benfeng Xu and Quan Wang and Yajuan Lyu and Yong Zhu and Zhendong Mao},
      year={2021},
      eprint={2102.10249},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021