[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Overview

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

This repo contains the PyTorch code and implementation for the paper Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning
Bin Liang#, Wangda Luo#, Xiang Li, Lin Gui, Min Yang, Xiaoqi Yu, and Ruifeng Xu*. Proceedings of CIKM 2020

Please cite our paper and kindly give a star for this repository if you use this code.

For any question, plaese email [email protected] or [email protected].

Model Overview

model

Requirement

  • pytorch >= 0.4.0
  • numpy >= 1.13.3
  • sklearn
  • python 3.6 / 3.7
  • CUDA 9.0
  • transformers

To install requirements, run pip install -r requirements.txt.

Dataset

you can directly use the processed dataset located in datasets/:
Note that you need to extract the data from the datasets folder: unzip datasets.zip

├── data
│   │   ├── semeval14(res14,laptop14)
│   │   ├── semeval15(res15)
│   │   ├── semeval16(res16)
│   │   ├── MAMS

The dataSet contains with cl_2X3 is the dataSet obtained after label argment, and each data is as follows:
Context
Aspect
Aspect-sentiment-label(-1:negative;0:netrual;1:positive)
Contrastive-label(aspect-dependent/aspect-invariant)
Contrastive-aspect-label(0:negative;1:netrual;2:positive)

Preparation

a) Download the pytorch version pre-trained bert-base-uncased model and vocabulary from the link provided by huggingface. Then change the value of parameter --bert_model_dir to the directory of the bert model. you can get the pre-trained bert-base-uncased model in https://github.com/huggingface/transformers.

b) Label enhancement method. For new data, additional supervised signals need to be obtained through label enhancement;
    i) Through BERT overfitting the training set, the acc can reach more than 97%;
    ii) Replace aspect with other or mask, and get the emotional label of the aspect after replacing the aspect;
    iii) Determine whether the output label is consistent with the real label, and fill in the aspect-dependent/aspect-invariant label for the data.

c) The data defaults are in data_utils.py, which you can view if you want to change the data entered into the model.

Training

  1. Adjust the parameters and set the experiment.
    --model:Selection model.(bert_spc_cl)
    --dataset:Select dataSet.(acl14,res14,laptop14,res15,res16,mams and so on)
    --num_epoch:Iterations of the model.
    --is_test 0:Verify module.(1 is data verification, 0 is model training)
    --type: Select a task type.(normal,cl2,cl6,cl2X3)
  2. Run the shell script to start the program.
bash run.sh

For run.sh code:


CUDA_VISIBLE_DEVICES=3 \
  python train_cl.py \
  --model_name bert_spc_cl \
  --dataset cl_mams_2X3 \
  --num_epoch 50 \
  --is_test 0 \
  --type cl2X3

For dataset,you can choose these dataset : "cl_acl2014_2X3" "cl_res2014_2X3" "cl_laptop2014_2X3" "cl_res2015_2X3" "cl_res2016_2X3" "cl_mams_2X3".

Testing

bash run_test.sh

Citation

@inproceedings{10.1145/3459637.3482096,
author = {Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
title = {Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
year = {2021},
isbn = {9781450384469},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3459637.3482096},
doi = {10.1145/3459637.3482096},
abstract = {Most existing aspect-based sentiment analysis (ABSA) research efforts are devoted to extracting the aspect-dependent sentiment features from the sentence towards the given aspect. However, it is observed that about 60% of the testing aspects in commonly used public datasets are unknown to the training set. That is, some sentiment features carry the same polarity regardless of the aspects they are associated with (aspect-invariant sentiment), which props up the high accuracy of existing ABSA models when inevitably inferring sentiment polarities for those unknown testing aspects. Therefore, in this paper, we revisit ABSA from a novel perspective by deploying a novel supervised contrastive learning framework to leverage the correlation and difference among different sentiment polarities and between different sentiment patterns (aspect-invariant/-dependent). This allows improving the sentiment prediction for (unknown) testing aspects in the light of distinguishing the roles of valuable sentiment features. Experimental results on 5 benchmark datasets show that our proposed approach substantially outperforms state-of-the-art baselines in ABSA. We further extend existing neural network-based ABSA models with our proposed framework and achieve improved performance.},
booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
pages = {3242–3247},
numpages = {6},
keywords = {sentiment analysis, contrastive learning, aspect sentiment analysis},
location = {Virtual Event, Queensland, Australia},
series = {CIKM '21}
}

or

@inproceedings{liang2021enhancing,
  title={Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
  author={Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={3242--3247},
  year={2021}
}

Credits

YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023