Chinese Named Entity Recognization (BiLSTM with PyTorch)

Overview

BiLSTM-CRF for Name Entity Recognition PyTorch version

A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition.

使用 PyTorch 实现 Bi-LSTM-CRF 模型,用来完成中文命名实体识别任务。

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用tab("\t")隔开
  • 其中句子与句子之间使用空行隔开
  • 文件最后以两个换行结束

训练数据和测试数据存放在 datasets 目录下,在 data.py 中有具体读取数据的代码。

Project Structure

./
├── README.md
├── __pycache__
├── config.py                       模型超参数配置
├── data.py                         数据转换 加载词表
├── datasets                        数据集
│   ├── dct.pkl                     词表
│   ├── test_data.txt               训练集
│   └── train_data.txt              测试集
├── evaluate.py                     评估模型
├── log                             nohup训练输出日志
│   └── nohup.out
├── main.py                         训练
├── metric.py                       计算f1评估指标
├── model.py                        模型构建
├── path.py                         所有路径
├── predict.py                      实体抽取预测
├── pulmonary_label2id.json         所有label
├── requirements.txt                pip包
├── statistic.py                    统计最长句子长度
├── trainer.py                      训练器构建
├── utils
│   ├── __init__.py
│   ├── __pycache__
│   ├── earlystopping.py            早停工具
│   └── load_data.py                构建label2id工具
└── weights                         权重
    └── xxx.pth

6 directories, 32 files

Steps

  1. 替换数据集
  2. 修改path.py中的地址
  3. 修改data.py中的文本最长长度SEQUENCE_MAX_LENGTH
  4. 使用utils/load_data.py生成label2id.txt文件,将其中的内容填到data.py的TAG_MAP中。注意:序号必须从1开始
  5. 修改data.py中的len_tag_dict,值等于TAG_MAP的最大值
  6. 修改data.py中build_dict(corpus, num_words = 6000)的num_words,为词表长度,词表按词频生成,超过num_words的将被忽略
  7. 根据需要修改model.py模型结构
  8. 修改config.py的超参数
  9. 训练前debug看下main.py的train_dl,train_ds对不对
  10. 训练,注意,必须传入验证集数据,如果没有验证集,就把测试集传入

Model

模型的结构大致如下,这里 BiLSTM 层的输入为字向量。Bi-LSTM 对每个字进行编码,然后经过 softmax 后,每个词对应一个长度为 len(tags) 的向量,在不使用 CRF 的方法中,就取这个向量中最大的值的位置作为预测的 tag 了,可能会不符合BIO标签的规则。

这里每个词的对应的向量作为 CRF 的输入,CRF 会最大化整个序列的概率,学习BIO的规则,保证输出格式是合法的。

在 PyTorch 中没有 CRF 层,这里使用了 AllenNLP 中的 CRF 实现

Config

在条件随机场中存在一个状态转移矩阵,在这里此状态转移矩阵就包含的是不同 tag 之间转移的概率。但并不是任何状态之间都能进行转移的,比如 B-PER 就不可能转移到 I-LOC 上。condtraints 就用来指明那些状态之间可以转移,这样将极大地减少可能性,在训练和解码过程中,能够大幅提升速度。请务必指定此参数,其创建方法见 data.py

Train

runfile('/Volumes/Riesling/TRAIN/Torch-base/src/BiLSTM_CRF/main.py', wdir='/Volumes/Riesling/TRAIN/Torch-base/src/BiLSTM_CRF')
-----------------------------------------------------------------------------------------------------------
               Layer (type)                                    Input Shape         Param #     Tr. Param #
===========================================================================================================
                Embedding-1                                      [100, 32]         180,300         180,300
                     LSTM-2     [100, 32, 300], [2, 32, 256], [2, 32, 256]       1,142,784       1,142,784
                     LSTM-3     [100, 32, 512], [2, 32, 128], [2, 32, 128]         657,408         657,408
                  Dropout-4                                 [100, 32, 256]               0               0
                   Linear-5                                 [32, 100, 256]           7,453           7,453
   ConditionalRandomField-6            [32, 100, 29], [32, 100], [32, 100]           1,860             899
===========================================================================================================
Total params: 1,989,805
Trainable params: 1,988,844
Non-trainable params: 961
-----------------------------------------------------------------------------------------------------------
training on  cpu
epoch [1]: 100%|██████████| 29/29 [00:26<00:00,  1.09it/s, loss=42.7]
2021-12-17 14:52:37,207 - epoch 1 - loss: 42.6906 acc: 0.2409 - test_acc: 0.1804
epoch [2]: 100%|██████████| 29/29 [00:28<00:00,  1.02it/s, loss=17.6]
2021-12-17 14:53:19,099 - epoch 2 - loss: 17.5649 acc: 0.6874 - test_acc: 0.6554
epoch [3]: 100%|██████████| 29/29 [00:32<00:00,  1.10s/it, loss=10.7]
2021-12-17 14:54:01,811 - epoch 3 - loss: 10.6861 acc: 0.7702 - test_acc: 0.6908
epoch [4]: 100%|██████████| 29/29 [00:31<00:00,  1.07s/it, loss=7.76]
2021-12-17 14:54:43,429 - epoch 4 - loss: 7.7551 acc: 0.8336 - test_acc: 0.7633
epoch [5]: 100%|██████████| 29/29 [00:29<00:00,  1.03s/it, loss=5.89]
2021-12-17 14:55:23,635 - epoch 5 - loss: 5.8919 acc: 0.8689 - test_acc: 0.7907
epoch [6]: 100%|██████████| 29/29 [00:29<00:00,  1.00s/it, loss=4.68]
2021-12-17 14:56:01,725 - epoch 6 - loss: 4.6774 acc: 0.8798 - test_acc: 0.7858
epoch [7]: 100%|██████████| 29/29 [00:38<00:00,  1.32s/it, loss=4.03]
2021-12-17 14:56:53,304 - epoch 7 - loss: 4.0329 acc: 0.9052 - test_acc: 0.7858
epoch [8]: 100%|██████████| 29/29 [00:35<00:00,  1.21s/it, loss=3.34]
2021-12-17 14:57:41,694 - epoch 8 - loss: 3.3428 acc: 0.9118 - test_acc: 0.8180
epoch [9]: 100%|██████████| 29/29 [00:38<00:00,  1.32s/it, loss=2.98]
2021-12-17 14:58:29,565 - epoch 9 - loss: 2.9814 acc: 0.9217 - test_acc: 0.7762
epoch [10]: 100%|██████████| 29/29 [00:36<00:00,  1.26s/it, loss=2.53]
2021-12-17 14:59:15,809 - epoch 10 - loss: 2.5263 acc: 0.9298 - test_acc: 0.7971

Evaluate

metric_test = evaluate(model, test_dl, device, verbose = True)
print(metric_test.report())

测试集上的表现:

predicting training set: 100%|██████████| 29/29 [00:08<00:00,  3.46it/s]
Train set
            ANATOMY     SIGN        QUANTITY    ORGAN       TEXTURE     DISEASE     DENSITY     BOUNDARY    MARGIN      DIAMETER    SHAPE       TREATMENT   LUNGFIELD   NATURE      
precision   0.92        0.93        0.97        0.86        0.93        0.95        0.90        1.00        1.00        0.95        0.88        0.91        1.00        1.00        
recall      0.92        0.93        0.94        0.79        0.88        0.93        0.90        1.00        1.00        0.95        0.77        0.89        0.92        1.00        
f1          0.92        0.93        0.95        0.82        0.90        0.94        0.90        1.00        1.00        0.95        0.82        0.90        0.96        1.00        
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
precision   0.93
recall      0.92
f1          0.93

predicting test set: 100%|██████████| 5/5 [00:01<00:00,  3.85it/s]
Test set
            ANATOMY     SIGN        QUANTITY    ORGAN       TEXTURE     DISEASE     DENSITY     BOUNDARY    MARGIN      DIAMETER    SHAPE       TREATMENT   LUNGFIELD   NATURE      
precision   0.83        0.72        0.87        0.69        0.86        0.72        1.00        0.75        0.83        1.00        0.71        0.56        0.83        1.00        
recall      0.81        0.76        0.85        0.64        1.00        0.61        1.00        1.00        0.83        1.00        0.83        0.38        1.00        0.86        
f1          0.82        0.74        0.86        0.67        0.92        0.66        1.00        0.86        0.83        1.00        0.77        0.45        0.91        0.92        
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
precision   0.79
recall      0.78
f1          0.79

Predict

model = BiLSTM_CRF(Config())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.load_state_dict(torch.load(path.weights_path + path.saved_model_name, map_location = torch.device(device)))
sentence = '右横隔见数枚肿大淋巴结较前退缩,现显示不清(4:9)。左肺下叶后基底段见不规则结节灶较前稍缩小,现最大截面约1.1cm*0.9cm(7.15),边界尚清;右肺中下叶见散在数枚直径小于0.5cm的模糊小结节影与前大致相仿(7:18、30、36);双肺尖见少许斑片、条索影较前无明显变化,余肺野未见明显实质性病变。'
tags = predict_sentence_tags(model, sentence, dct, device)
print(get_entity(sentence, tags))

预测结果:

{
    'ANATOMY': {'9mm', '右肺中下叶', '左肺下叶后基底段', '右横隔', '双肺尖'}, 
    'SIGN': {'明显实质性病变', '肿大淋巴结较前退缩', '斑片、条索影较前无明显变化', '较前稍缩小', '不规则结节灶', '数枚', '小结节影'}, 
    'DIAMETER': {'1.1*'}, 
    'BOUNDARY': {'尚清'}, 
    'QUANTITY': {'少许', '未见'}
}
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022