VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

Related tags

Deep LearningVL-LTR
Overview

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

Usage

First, install PyTorch 1.7.1+, torchvision 0.8.2+ and other required packages as follows:

conda install -c pytorch pytorch torchvision
pip install timm==0.3.2
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
pip install mmcv==1.3.14

Data preparation

ImageNet-LT

Download and extract ImageNet train and val images from here. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively.

Then download and extract the wiki text into the same directory, and the directory tree of data is expected to be like this:

./data/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
  wiki/
  	desc_1.txt
  ImageNet_LT_test.txt
  ImageNet_LT_train.txt
  ImageNet_LT_val.txt
  labels.txt

After that, download the CLIP's pretrained weight RN50.pt and ViT-B-16.pt into the pretrained directory from https://github.com/openai/CLIP.

Places-LT

Download the places365_standard data from here.

Then download and extract the wiki text into the same directory. The directory tree of data is expected to be like this (almost the same as ImageNet-LT):

./data/places/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
  wiki/
  	desc_1.txt
  Places_LT_test.txt
  Places_LT_train.txt
  Places_LT_val.txt
  labels.txt

iNaturalist 2018

Download the iNaturalist 2018 data from here.

Then download and extract the wiki text into the same directory. The directory tree of data is expected to be like this:

./data/iNat/
  train_val2018/
  wiki/
  	desc_1.txt
  categories.json
  test2018.json
  train2018.json
  val.json

Evaluation

To evaluate VL-LTR with a single GPU run:

  • Pre-training stage
bash eval.sh ${CONFIG_PATH} 1 --eval-pretrain
  • Fine-tuning stage:
bash eval.sh ${CONFIG_PATH} 1

The ${CONFIG_PATH} is the relative path of the corresponding configuration file in the config directory.

Training

To train VL-LTR on a single node with 8 GPUs for:

  • Pre-training stage, run:
bash dist_train_arun.sh ${PARTITION} ${CONFIG_PATH} 8
  • Fine-tuning stage:

    • First, calculate the $\mathcal L_{\text{lin}}$ of each sentence for AnSS method by running this:
    bash eval.sh ${CONFIG_PATH} 1 --eval-pretrain --select
    • then, running this:
    bash dist_train_arun.sh ${PARTITION} ${CONFIG_PATH} 8

The ${CONFIG_PATH} is the relative path of the corresponding configuration file in the config directory.

Results

Below list our model's performance on ImageNet-LT, Places-LT, and iNaturalist 2018.

Dataset Backbone Top-1 Accuracy Download
ImageNet-LT ResNet-50 70.1 Weights
ImageNet-LT ViT-Base-16 77.2 Weights
Places-LT ResNet-50 48.0 Weights
Places-LT ViT-Base-16 50.1 Weights
iNaturalist 2018 ResNet-50 74.6 Weights
iNaturalist 2018 ViT-Base-16 76.8 Weights

For more detailed information, please refer to our paper directly.

Citation

If you are interested in our work, please cite as follows:

@article{tian2021vl,
  title={VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition},
  author={Tian, Changyao and Wang, Wenhai and Zhu, Xizhou and Wang, Xiaogang and Dai, Jifeng and Qiao, Yu},
  journal={arXiv preprint arXiv:2111.13579},
  year={2021}
}

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

You might also like...
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Implementation of
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Official codes for the paper
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

[ICCV2021] Official code for
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

Comments
  • Problem about running eval.sh

    Problem about running eval.sh

    """ #!/usr/bin/env bash set -x

    export NCCL_LL_THRESHOLD=0

    CONFIG=$1 GPUS=$1 CPUS=$[GPUS*2] PORT=${PORT:-8886}

    CONFIG_NAME=${CONFIG##/} CONFIG_NAME=${CONFIG_NAME%.}

    OUTPUT_DIR="./checkpoints/eval" if [ ! -d $OUTPUT_DIR ]; then mkdir ${OUTPUT_DIR} fi

    python -u main.py
    --port=$PORT
    --num_workers 4
    --resume "./checkpoints/${CONFIG_NAME}/checkpoint.pth"
    --output-dir ${OUTPUT_DIR}
    --config $CONFIG ${@:3}
    --eval
    2>&1 | tee -a ${OUTPUT_DIR}/train.log """ I have two A100, so set GPUS is 2. All other settings according to ReadME.md but I got a problem when running eval.sh """ File "eval.sh", line 4 export NCCL_LL_THRESHOLD=0 ^ SyntaxError: invalid syntax

    """

    opened by euminds 2
  • Mismatch between code and diagram in paper for the fine-tuning phase

    Mismatch between code and diagram in paper for the fine-tuning phase

    In fig 3, stage 2 from the paper, it looks like value for the attention is calculated based on Vision and language (Q is vision, K is language) and then applied to the language (V). But in the code, the attention is applied to the visual features. Can you verify which one is the correct way? @ChangyaoTian

    opened by rahulvigneswaran 0
  • pre-trained weights with TorchScript?

    pre-trained weights with TorchScript?

    Hello, Thanks for the great work! May I ask if it's possible for you to also provide the checkpoint weight in a TorchScript version?

    It's something like:

    import torch
    import torchvision.models as models
    
    model = models.resnet50()
    traced = torch.jit.trace(model, (torch.rand(4, 3, 224, 224),))
    torch.jit.save(traced, "test.pt")
    
    # load model
    model = torch.jit.load("test.pt")
    
    opened by xinleihe 0
Releases(ECCV-2022-video)
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022