A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

Overview

PFN (Partition Filter Network)

This repository contains codes of the official implementation for the paper A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021 [PDF] [PPT]

Quick links

Model Overview

In this work, we present a new framework equipped with a novel recurrent encoder named partition filter encoder designed for multi-task learning. The encoder enforces bilateral interaction between NER and RE in two ways:

  1. The shared partition represents inter-task information and is equally accessible to both tasks, allowing for balanced interaction between NER and RE.
  2. The task partitions represent intra-task information and are formed through concerted efforts of entity and relation gates, making sure that encoding process of entity and relation features are dependent upon each other.

Preparation

Environment Setup

The experiments were performed using one single NVIDIA-RTX3090 GPU. The dependency packages can be installed with the following command:

pip install -r requirements.txt

Also, make sure that the python version is 3.7.10

Data Acquisition and Preprocessing

This is the first work that covers all the mainstream English datasets for evaluation, including [NYT, WEBNLG, ADE, ACE2005, ACE2004, SCIERC, CONLL04]. Please follow the instructions of reademe.md in each dataset folder in ./data/ for data acquisition and preprocessing.

Custom Dataset

If your custom dataset has a large number of triples that contain head-overlap entities (common in Chinese dataset), accuracy of the orignal PFN will not be good.

The orignal one will not be able to decode triples with head-overlap entities. For example, if New York and New York City are both entities, and there exists a RE prediction such as (new, cityof, USA), we cannot know what New corresponds to.

Luckily, the impact on evaluation of English dataset is limited, since such triple is either filtered out (for ADE) or rare (one in test set of SciERC, one in ACE04, zero in other datasets).

You can use our updated PFN-nested to handle the issue. PFN-nested is an enhanced version of PFN. This model is better in leveraging entity tail information and capable of handling nested triple prediction. For usage, replace the files in the root directory with the files in the PFN-nested folder, then follow the directions in Quick Start.

Performance comparison in SciERC

Model NER RE
PFN 66.8 38.4
PFN-nested 67.9 38.7

Quick Start

Model Training

The training command-line is listed below (command for CONLL04 is in Evaluation on CoNLL04):

python main.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--do_train \
--do_eval \
--embed_mode ${bert_cased/albert/scibert} \
--batch_size ${20 (for most datasets) /4 (for SCIERC)} \
--lr ${0.00002 (for most datasets) /0.00001 (for SCIERC)} \
--output_file ${the name of your output files, e.g. ace_test} \
--eval_metric ${micro/macro} 

After training, you will obtain three files in the ./save/${output_file}/ directory:

  • ${output_file}.log records the logging information.
  • ${output_file}.txt records loss, NER and RE results of dev set and test set for each epoch.
  • ${output_file}.pt is the saved model with best average F1 results of NER and RE in the dev set.

Evaluation on Pre-trained Model

The evaluation command-line is listed as follows:

python eval.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--eval_metric ${micro/macro} \
--model_file ${the path of saved model you want to evaluate. e.g. save/ace_test.pt} \
--embed_mode ${bert_cased/albert/scibert}

Inference on Customized Input

If you want to evaluate the model with customized input, please run the following code:

python inference.py \
--model_file ${the path of your saved model} \
--sent ${sentence you want to evaluate, str type restricted}

{model_file} must contain information about the datasets the model trained on (web/nyt/ade/ace/sci) and the type of pretrained embedding the model uses (albert/bert/scibert). For example, model_file could be set as "web_bert.pt"

Example

input:
python inference.py \
--model_file save/sci_test_scibert.pt \
--sent "In this work , we present a new framework equipped with a novel recurrent encoder   
        named partition filter encoder designed for multi-task learning ."

result:
entity_name: framework, entity type: Generic
entity_name: recurrent encoder, entity type: Method
entity_name: partition filter encoder, entity type: Method
entity_name: multi-task learning, entity type: Task
triple: recurrent encoder, Used-for, framework
triple: recurrent encoder, Part-of, framework
triple: recurrent encoder, Used-for, multi-task learning
triple: partition filter encoder, Hyponym-of, recurrent encoder
triple: partition filter encoder, Used-for, multi-task learning



input:  
python inference.py \
--model_file save/ace_test_albert.pt \
--sent "As Williams was struggling to gain production and an audience for his work in the late 1930s ,  
        he worked at a string of menial jobs that included a stint as caretaker on a chicken ranch in   
        Laguna Beach , California . In 1939 , with the help of his agent Audrey Wood , Williams was 
        awarded a $1,000 grant from the Rockefeller Foundation in recognition of his play Battle of 
        Angels . It was produced in Boston in 1940 and was poorly received ."

result:
entity_name: Williams, entity type: PER
entity_name: audience, entity type: PER
entity_name: his, entity type: PER
entity_name: he, entity type: PER
entity_name: caretaker, entity type: PER
entity_name: ranch, entity type: FAC
entity_name: Laguna Beach, entity type: GPE
entity_name: California, entity type: GPE
entity_name: his, entity type: PER
entity_name: agent, entity type: PER
entity_name: Audrey Wood, entity type: PER
entity_name: Williams, entity type: PER
entity_name: Rockefeller Foundation, entity type: ORG
entity_name: his, entity type: PER
entity_name: Boston, entity type: GPE
triple: caretaker, PHYS, ranch
triple: ranch, PART-WHOLE, Laguna Beach
triple: Laguna Beach, PART-WHOLE, California

Evaluation on CoNLL04

We also run the test on the dataset CoNLL04, but we did not report the results in our paper due to several reasons:

The command for running CoNLL04 is listed below:

python main.py \
--data CONLL04 \
--do_train \
--do_eval \
--embed_mode albert \
--batch_size 10 \
--lr 0.00002 \
--output_file ${the name of your output files} \
--eval_metric micro \
--clip 1.0 \
--epoch 200

Pre-trained Models and Training Logs

We provide you with pre-trained models for NYT/WEBNLG/ACE2005/ACE2004/SCIERC/CONLL04, along with recorded results of each epoch, identical with training results under the specified configurations above.

Download Links

Due to limited space in google drive, 10-fold model files for ADE are not available to you (training record still available).

After downloading the linked files below, unzip them and put ${data}_test.pt in the directory of ./save/ before running eval.py. Also, ${data}_test.txt and ${data}_test.log records the results of each epoch. You should check that out as well.

Dataset File Size Embedding Download
NYT 393MB Bert-base-cased Link
WebNLG 393MB Bert-base-cased Link
ACE05 815MB Albert-xxlarge-v1 Link
ACE04 3.98GB Albert-xxlarge-v1 Link
SciERC 399MB Scibert-uncased Link
ADE 214KB Bert + Albert Link
CoNLL04 815MB Albert-xxlarge-v1 Link

Result Display

F1 results on NYT/WebNLG/ACE05/SciERC:

Dataset Embedding NER RE
NYT Bert-base-cased 95.8 92.4
WebNLG Bert-base-cased 98.0 93.6
ACE05 Albert-xxlarge-v1 89.0 66.8
SciERC Scibert-uncased 66.8 38.4

F1 results on ACE04:

5-fold 0 1 2 3 4 Average
Albert-NER 89.7 89.9 89.5 89.7 87.6 89.3
Albert-RE 65.5 61.4 63.4 61.5 60.7 62.5

F1 results on CoNLL04:

Model Embedding Micro-NER Micro-RE
Table-sequence Albert-xxlarge-v1 90.1 73.6
PFN Albert-xxlarge-v1 89.6 75.0

F1 results on ADE:

10-fold 0 1 2 3 4 5 6 7 8 9 Average
Bert-NER 89.6 92.3 90.3 88.9 88.8 90.2 90.1 88.5 88.0 88.9 89.6
Bert-RE 80.5 85.8 79.9 79.4 79.3 80.5 80.0 78.1 76.2 79.8 80.0
Albert-NER 91.4 92.9 91.9 91.5 90.7 91.6 91.9 89.9 90.6 90.7 91.3
Albert-RE 83.9 86.8 82.8 83.2 82.2 82.4 84.5 82.3 81.9 82.2 83.2

Robustness Against Input Perturbation

We use robustness test to evaluate our model under adverse circumstances. In this case, we use the domain transformation methods of NER from Textflint.

The test files can be found in the folder of ./robustness_data/. Our reported results are evaluated with the linked ACE2005-albert model above. For each test file, move it to ./data/ACE2005/ and rename it as test_triples.json, then run eval.py with the instructions above.

Citation

Please cite our paper if it's helpful to you in your research.

@misc{yan2021partition,
      title={A Partition Filter Network for Joint Entity and Relation Extraction}, 
      author={Zhiheng Yan and Chong Zhang and Jinlan Fu and Qi Zhang and Zhongyu Wei},
      year={2021},
      eprint={2108.12202},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
zhy
Knowledge Graph, Information Extraction, Interpretability of NLP System
zhy
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023