A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

Overview

Awesome-LiDAR-Camera-Calibration

Awesome

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes.

Outline

0. Introduction

For applications such as autonomous driving, robotics, navigation systems, and 3-D scene reconstruction, data of the same scene is often captured using both lidar and camera sensors. To accurately interpret the objects in a scene, it is necessary to fuse the lidar and the camera outputs together. Lidar camera calibration estimates a rigid transformation matrix (extrinsics, rotation+translation, 6 DoF) that establishes the correspondences between the points in the 3-D lidar plane and the pixels in the image plane.

Example

1. Target-based methods

Paper Target Feature Optimization Toolbox Note
Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration), 2004 checkerboard C:Plane (a), L: pts in plane (m) point-to-plane CamLaserCalibraTool CN
Fast Extrinsic Calibration of a Laser Rangefinder to a Camera, 2005 checkerboard C: Plane (a), L: Plane (m) plane(n/d) correspondence, point-to-plane LCCT *
Extrinsic calibration of a 3D laser scanner and an omnidirectional camera, 2010 checkerboard C: plane (a), L: pts in plane (m) point-to-plane cam_lidar_calib *
LiDAR-Camera Calibration using 3D-3D Point correspondences, 2017 cardboard + ArUco C: 3D corners (a), L: 3D corners (m) ICP lidar_camera_calibration *
Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard, 2017 checkerboard C: 2D corners (a), L: 3D corners (a) PnP, angle difference ILCC *
Extrinsic Calibration of Lidar and Camera with Polygon, 2018 regular cardboard C: 2D edge, corners (a), L: 3D edge, pts in plane (a) point-to-line, point-inside-polygon ram-lab/plycal *
Automatic Extrinsic Calibration of a Camera and a 3D LiDAR using Line and Plane Correspondences, 2018 checkerboard C: 3D edge, plane(a), L: 3D edge, pts in plane (a) direcion/normal, point-to-line, point-to-plane Matlab LiDAR Toolbox *
Improvements to Target-Based 3D LiDAR to Camera Calibration, 2020 cardboard with ArUco C: 2d corners (a), L: 3D corners (a) PnP, IOU github *
ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems, 2020 checkerboard C: 2D corners (a), L: 3D corners (a) PnP ACSC *
Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor Setups, 2021 cardboard with circle & Aruco C: 3D points (a), L: 3D points (a) ICP velo2cam_ calibration *

C: camera, L: LiDAR, a: automaic, m: manual

2. Targetless methods

2.1. Motion-based methods

Paper Feature Optimization Toolbox Note
LiDAR and Camera Calibration Using Motions Estimated by Sensor Fusion Odometry, 2018 C: motion (ICP), L: motion (VO) hand-eye calibration * *

2.2. Scene-based methods

2.2.1. Traditional methods

Paper Feature Optimization Toolbox Note
Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information, 2012 C:grayscale, L: reflectivity mutual information, BB steepest gradient ascent Extrinsic Calib *
Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information, 2013 C:grayscale, L: reflectivity, noraml normalized MI, particle swarm * *
Automatic Online Calibration of Cameras and Lasers, 2013 C: Canny edge, L: depth-discontinuous edge correlation, grid search * *
SOIC: Semantic Online Initialization and Calibration for LiDAR and Camera, 2020 semantic centroid PnP * *
A Low-cost and Accurate Lidar-assisted Visual SLAM System, 2021 C: edge(grayscale), L: edge (reflectivity, depth projection) ICP, coordinate descent algorithms CamVox *
Pixel-level Extrinsic Self Calibration of High Resolution LiDAR and Camera in Targetless Environments,2021 C:Canny edge(grayscale), L: depth-continuous edge point-to-line, Gaussian-Newton livox_camera_calib *
CRLF: Automatic Calibration and Refinement based on Line Feature for LiDAR and Camera in Road Scenes, 2021 C:straight line, L: straight line perspective3-lines (P3L) * CN

2.2.2. Deep-learning methods

Pape Toolbox Note
RegNet: Multimodal sensor registration using deep neural networks, 2017,IV regnet *
CalibNet: Geometrically supervised extrinsic calibration using 3d spatial transformer networks,2018,IROS CalibNet *

3. Other toolboxes

Toolbox Introduction Note
Apollo sensor calibration tools targetless method, no source code CN
Autoware camera lidar calibrator pick points mannually, PnP *
Autoware calibration camera lidar checkerboard, similar to LCCT CN
livox_camera_lidar_calibration pick points mannually, PnP *
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022