Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
Gnosis-py includes a set of libraries to work with Ethereum and Gnosis projects

Gnosis-py Gnosis-py includes a set of libraries to work with Ethereum and Gnosis projects: EthereumClient, a wrapper over Web3.py Web3 client includin

Gnosis 93 Dec 23, 2022
A simple way to create a request to the coinpayment API with a valid HMAC using your private key and command

Coinpayments Verify TXID Created for Astral Discord bot A simple way to create a request to the coinpayment API with a valid HMAC using your private k

HellSec 1 Nov 07, 2022
A Telegram Music Bot with proper functions written in Python with Pyrogram and Py-Tgcalls.

⭐️ Yukki Music Bot ⭐️ A Telegram Music Bot written in Python using Pyrogram and Py-Tgcalls Ready to use method A Support Group and ready-to-use runnin

Shikhar Kumar 1000 Jan 03, 2023
Vladilena Mirize Music - Bot Music Telegram By @zenfrans

Vladilena Mirize Music - Bot Music Telegram By @zenfrans

Wahyusaputra 3 Feb 12, 2022
通过GitHub的actions 自动采集节点 生成订阅信息

VmessActions 通过GitHub的actions 自动采集节点 自动生成订阅信息 订阅内容自动更新再仓库的 clash.yml 和 v2ray.txt 中 然后PC端/手机端根据自己的软件支持的格式,订阅对应的链接即可

skywolf627 372 Jan 04, 2023
This is an implementation example of a bot that periodically sends predictions to the alphasea-agent.

alphasea-example-model alphasea-example-modelは、 alphasea-agent に対して毎ラウンド、予測を投稿するプログラムです。 Numeraiのexample modelに相当します。 準備 alphasea-example-modelの動作には、

AlphaSea 11 Jul 28, 2022
PHION's client-side core python library

PHION-core PHION's client-side core python library. This library is not meant to be used directly by users. If you want to install phion please use th

PHION 2 Feb 07, 2022
A full-fledged discord bot with moderation and a lot more.

HOT-BOT-POL-POT ⭐ Star me on GitHub m'lady.... hot-bot-pol-pot is a moderation discord bot written using enhanced-dpy library with many functionalitie

Pure Cheekbones 4 Oct 08, 2022
Build better AWS infrastructure

Sceptre About Sceptre is a tool to drive AWS CloudFormation. It automates the mundane, repetitive and error-prone tasks, enabling you to concentrate o

sceptre 1.4k Jan 04, 2023
A Discord chat bot for the Tardsquad guild (Discord name for server).

Tardsquad Discord Bot A Discord chat bot for the Tardsquad guild (Discord name for server). Resouces Discord Developer Portal A general tutorial for a

Tardsquad Quality Code Inc. 4 Jul 26, 2022
Bot made by BLACKSTORM[BM] Contact Us - t.me/BLACKSTORM18

ᴡʜᴀᴛ ɪs ᴊᴀʀᴠɪs sᴇᴄᴜʀɪᴛʏ ʙᴏᴛ ᴊᴀʀᴠɪs ʙᴏᴛ ɪs ᴛᴇʟᴇɢʀᴀᴍ ɢʀᴏᴜᴘ ᴍᴀɴᴀɢᴇʀ ʙᴏᴛ ᴡɪᴛʜ ᴍᴀɴʏ ғᴇᴀᴛᴜʀᴇs. ᴛʜɪs ʙᴏᴛ ʜᴇʟᴘs ʏᴏᴜ ᴛᴏ ᴍᴀɴᴀɢᴇ ʏᴏᴜʀ ɢʀᴏᴜᴘs ᴇᴀsɪʟʏ. ᴏʀɪɢɪɴᴀʟʟʏ ᴀ

1 Dec 11, 2021
A bot to display per user data from the Twitch Leak

twitch-leak-bot-discord A bot to display per user data from the Twitch Leak by username Where's the data? I can't and don't want to supply the .csv's

SSSEAL-C 0 Nov 08, 2022
SquireBot is a Discord bot designed to run and manage tournaments entirely within a Discord.

Overview SquireBot is a Discord bot designed to run and manage tournaments entirely within a Discord. The current intended usecase is Magic: the Gathe

7 Nov 29, 2022
Telegram-Discord Bridge

imperial-toilet Скрипт, пересылающий сообщения из нескольких каналов Telegram в один/несколько каналов Discord. Технически это Telegram-юзербот и Disc

1 Jan 17, 2022
Yes, it's true :heartbeat: This repository has 337 stars.

Yes, it's true! Inspired by a similar repository from @RealPeha, but implemented using a webhook on AWS Lambda and API Gateway, so it's serverless! If

512 Jan 01, 2023
discord token grabber scam - eductional purposes only!

Discord-QR-Scam תופס אסימון תמונה של Discord על אודות סקריפט Python שיוצר אוטומטית קוד QR הונאה של Nitro ותופס את אסימון הדיסקורד בעת סריקה. כלי זה מד

Amit Pinchasi 0 May 22, 2022
Spotify Web API client for Python 3

Welcome to the GitHub repository of Tekore! We provide a client for the Spotify Web API for Python, complete with all available endpoints and authenti

Felix Hildén 186 Dec 22, 2022
Public repo of the bot

wiki-reddit-bot Public repo of u/wikipedia_answer_bot Tools Language: Python Libraries: praw (Reddit API) mediawikiapi (Wikipedia API) tenacity How it

TheBugYouCantFix 51 Dec 03, 2022
Discord Multitool made in python 3.9

XTool Discord Multitool 24 Features: Webhook Delete VC Lagger Fast Token Checker Mass Report [Not Done] Token rape 2K Characters Bypass Block bypass M

Tiie 50 Dec 20, 2022
Based on nonebot, a common bot framework for maimai.

mai bot 使用指南 此 README 提供了最低程度的 mai bot 教程与支持。 Step 1. 安装 Python 请自行前往 https://www.python.org/ 下载 Python 3 版本( 3.7)并将其添加到环境变量(在安装过程中勾选 Add to system P

Diving-Fish 150 Jan 01, 2023