Search with BERT vectors in Solr and Elasticsearch

Overview

BERT models with Solr and Elasticsearch

streamlit-search_demo_solr-2021-05-13-10-05-91.mp4
streamlit-search_demo_elasticsearch-2021-05-14-22-05-55.mp4

This code is described in the following Medium stories, taking one step at a time:

Neural Search with BERT and Solr (August 18,2020)

Fun with Apache Lucene and BERT Embeddings (November 15, 2020)

Speeding up BERT Search in Elasticsearch (March 15, 2021)

Ask Me Anything about Vector Search (June 20, 2021) This blog post gives the answers to the 3 most interesting questions asked during the AMA session at Berlin Buzzwords 2021. The video recording is available here: https://www.youtube.com/watch?v=blFe2yOD1WA

Bert in Solr hat Bert with_es burger


Tech stack:

  • bert-as-service
  • Hugging Face
  • solr / elasticsearch
  • streamlit
  • Python 3.7

Code for dealing with Solr has been copied from the great (and highly recommended) https://github.com/o19s/hello-ltr project.

Install tensorflow

pip install tensorflow==1.15.3

If you try to install tensorflow 2.3, bert service will fail to start, there is an existing issue about it.

If you encounter issues with the above installation, consider installing full list of packages:

pip install -r requirements_freeze.txt

Let's install bert-as-service components

pip install bert-serving-server

pip install bert-serving-client

Download a pre-trained BERT model

into the bert-model/ directory in this project. I have chosen uncased_L-12_H-768_A-12.zip for this experiment. Unzip it.

Now let's start the BERT service

bash start_bert_server.sh

Run a sample bert client

python src/bert_client.py

to compute vectors for 3 sample sentences:

    Bert vectors for sentences ['First do it', 'then do it right', 'then do it better'] : [[ 0.13186474  0.32404128 -0.82704437 ... -0.3711958  -0.39250174
      -0.31721866]
     [ 0.24873531 -0.12334424 -0.38933852 ... -0.44756213 -0.5591355
      -0.11345179]
     [ 0.28627345 -0.18580122 -0.30906814 ... -0.2959366  -0.39310536
       0.07640187]]

This sets up the stage for our further experiment with Solr.

Dataset

This is by far the key ingredient of every experiment. You want to find an interesting collection of texts, that are suitable for semantic level search. Well, maybe all texts are. I have chosen a collection of abstracts from DBPedia, that I downloaded from here: https://wiki.dbpedia.org/dbpedia-version-2016-04 and placed into data/dbpedia directory in bz2 format. You don't need to extract this file onto disk: the provided code will read directly from the compressed file.

Preprocessing and Indexing: Solr

Before running preprocessing / indexing, you need to configure the vector plugin, which allows to index and query the vector data. You can find the plugin for Solr 8.x here: https://github.com/DmitryKey/solr-vector-scoring

After the plugin's jar has been added, configure it in the solrconfig.xml like so:

">

  

Schema also requires an addition: field of type VectorField is required in order to index vector data:

">

  

Find ready-made schema and solrconfig here: https://github.com/DmitryKey/bert-solr-search/tree/master/solr_conf

Let's preprocess the downloaded abstracts, and index them in Solr. First, execute the following command to start Solr:

bin/solr start -m 2g

If during processing you will notice:

<...>/bert-solr-search/venv/lib/python3.7/site-packages/bert_serving/client/__init__.py:299: UserWarning: some of your sentences have more tokens than "max_seq_len=500" set on the server, as consequence you may get less-accurate or truncated embeddings.
here is what you can do:
- disable the length-check by create a new "BertClient(check_length=False)" when you do not want to display this warning
- or, start a new server with a larger "max_seq_len"
  '- or, start a new server with a larger "max_seq_len"' % self.length_limit)

The index_dbpedia_abstracts_solr.py script will output statistics:

Maximum tokens observed per abstract: 697
Flushing 100 docs
Committing changes
All done. Took: 82.46466588973999 seconds

We know how many abstracts there are:

bzcat data/dbpedia/long_abstracts_en.ttl.bz2 | wc -l
5045733

Preprocessing and Indexing: Elasticsearch

This project implements several ways to index vector data:

  • src/index_dbpedia_abstracts_elastic.py vanilla Elasticsearch: using dense_vector data type
  • src/index_dbpedia_abstracts_elastiknn.py Elastiknn plugin: implements own data type. I used elastiknn_dense_float_vector
  • src/index_dbpedia_abstracts_opendistro.py OpenDistro for Elasticsearch: uses nmslib to build Hierarchical Navigable Small World (HNSW) graphs during indexing

Each indexer relies on ready-made Elasticsearch mapping file, that can be found in es_conf/ directory.

Preprocessing and Indexing: GSI APU

In order to use GSI APU solution, a user needs to produce two files: numpy 2D array with vectors of desired dimension (768 in my case) a pickle file with document ids matching the document ids of the said vectors in Elasticsearch.

After these data files get uploaded to the GSI server, the same data gets indexed in Elasticsearch. The APU powered search is performed on up to 3 Leda-G PCIe APU boards. Since I’ve run into indexing performance with bert-as-service solution, I decided to take SBERT approach from Hugging Face to prepare the numpy and pickle array files. This allowed me to index into Elasticsearch freely at any time, without waiting for days. You can use this script to do this on DBPedia data, which allows choosing between:

EmbeddingModel.HUGGING_FACE_SENTENCE (SBERT)
EmbeddingModel.BERT_UNCASED_768 (bert-as-service)

To generate the numpy and pickle files, use the following script: scr/create_gsi_files.py. This script produces two files:

data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors.npy
data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors_docids.pkl

Both files are perfectly suitable for indexing with Solr and Elasticsearch.

To test the GSI plugin, you will need to upload these files to GSI server for loading them both to Elasticsearch and APU.

Running the BERT search demo

There are two streamlit demos for running BERT search for Solr and Elasticsearch. Each demo compares to BM25 based search. The following assumes that you have bert-as-service up and running (if not, laucnh it with bash start_bert_server.sh) and either Elasticsearch or Solr running with the index containing field with embeddings.

To run a demo, execute the following on the command line from the project root:

# for experiments with Elasticsearch
streamlit run src/search_demo_elasticsearch.py

# for experiments with Solr
streamlit run src/search_demo_solr.py
Owner
Dmitry Kan
I build search engines. Host of the Vector Podcast: https://www.youtube.com/channel/UCCIMPfR7TXyDvlDRXjVhP1g
Dmitry Kan
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022