Automatic deep learning for image classification.

Related tags

Deep LearningAutoDL
Overview

AutoDL

AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image.

AutoGluon

Documents for AutoDL Benchmark

This tutorial demonstrates how to use AutoDL with your own custom datasets. As an example, we use a dataset from Kaggle to show the required steps to format image data properly for AutoDL.

Step 1: Organizing the dataset into proper directories

After completing this step, you will have the following directory structure on your machine:

   Your_Dataset/
    ├──train/
        ├── class1/
        ├── class2/
        ├── class3/
        ├── ...
    ├──test/
        ├── class1/
        ├── class2/
        ├── class3/
        ├── ...

Here Your_Dataset is a folder containing the raw images categorized into classes. For example, subfolder class1 contains all images that belong to the first class, class2 contains all images belonging to the second class, etc.

We generally recommend at least 100 training images per class for reasonable classification performance, but this might depend on the type of images in your specific use-case.

Under each class, the following image formats are supported when training your model:

- JPG
- JPEG
- PNG

In the same dataset, all the images should be in the same format. Note that in image classification, we do not require that all images have the same resolution.

You will need to organize your dataset into the above directory structure before using AutoDL.

For kaggle datasets

Sometimes dataset needs additional data preprocessing by Script data_processing.

  data
    ├──XXXX/images_all
    ├         ├── img1.jpg
    ├         ├── img2.jpg
    ├──XXXX/test
    ├         ├── ...

python data_processing.py --dataset <aerial\dog\> --data-dir data

Finally, we have the desired directory structure under ./data/XXXX/train/, which in this case looks as follows:

  data
    ├──XXXX/train
    ├         ├── classA
    ├         ├── classb
    ├         ├── ...
    ├──XXXX/test
    ├         ├── ...
    ├
    ├
    ├──ZZZZ/train
    ├         ├── classA
    ├         ├── classb
    ├         ├── ...
    ├──ZZZZ/test
              ├── ...

For Paperwithcode datasets

TODO

python data_processing.py --dataset <aerial\dog\> --data-dir data

Step 2: Split the original dataset into train_data and test_data

Sometimes dataset needs additional data_split by Script data_split.

dataset__name
    ├──train
        ├──split/train
        ├         ├── classA
        ├         ├── classb
        ├         ├── ...
        ├──split/test
        ├         ├── classA
        ├         ├── classb
        ├         ├── ...
    ├──test
        ├── img1.jpg
        ├── img2.jpg
        ├── ...
python data_split.py --data-dir /data/AutoML_compete/Store-type-recognition/

Step 3: Use AutoDL fit to generate a classification model

Now that we have a Dataset object, we can use AutoGluon's default configuration to obtain an image classification model using the fit function.

Run benchmark.py script with different dataset:

AutoGluon Benchmark

python benchmark.py \
    --data_path /media/robin/DATA/datatsets/image_data/dog-breed-identification \
    --output_path /home/robin/jianzh/automl/autodl/benchmark \
    --dataset dog-breed-identification \
    --train_framework autogluon

AutoKeras Benchmark

python benchmark.py \
    --data_path /media/robin/DATA/datatsets/image_data/hymenoptera/images/train \
    --dataset hymenoptera \
    --output_path /home/robin/jianzh/automl/autodl/benchmark \
    --train_framework autokeras

Step 4: fit to generate a classification model

Bag of tricks are used on image classification dataset.

Customize parameter configuration according your data as follow:

lr_config = ag.space.Dict(
            lr_mode='cosine',
            lr_decay=0.1,
            lr_decay_period=0,
            lr_decay_epoch='40,80',
            warmup_lr=0.0,
            warmup_epochs=5)

tricks = ag.space.Dict(
            last_gamma=True,
            use_pretrained=True,
            use_se=False,
            mixup=False,
            mixup_alpha=0.2,
            mixup_off_epoch=0,
            label_smoothing=True,
            no_wd=True,
            teacher_name=None,
            temperature=20.0,
            hard_weight=0.5,
            batch_norm=False,
            use_gn=False)
Owner
wenqi
Learning is all you need!
wenqi
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022