Garbage classification using structure data.

Overview

垃圾分类模型使用说明

1.包含以下数据文件

文件 描述
data/MaterialMapping.csv 物体以及其归类的信息
data/TestRecords 光谱原始测试数据 CSV 文件
data/TestRecordDesc.zip CSV 文件描述文件
data/Boundaries.csv 物体轮廓信息

2.包含以下模型文件

文件夹 描述
output/Category/ 包含预测大类别的分类模型
output/Material/ 包含预测大类别(4类)的分类模型
output/Backgroud/ 包含预测小类别(50类)的分类模型

3.环境配置

  进入garbage路径,在anaconda命令行运行pip install -r requirements.txt

4.数据预处理

  在anaconda命令行运行python data_preprocess.py,即可在data文件夹中生成AllEmbracingDataset.csv。若将来更新数据,按照和原来相同的格式和路径保存在data文件夹中,即可用data_preprocess.py生成更新后的数据集

  • 运行数据预处理Python脚本,将上述数据的信息集合到一个数据文件中
python code/data_preprocess.py -data_dir D:/datasets/garbage \
                        -test \
                        -groupbyObjID

运行脚本生成的数据文件 datasets/AllEmbracingDataset.csv 数据集

5.模型训练Python脚本

python code/train_gbdt_lr.py -data_dir D:/datasets/garbage/ \
                    -use_groupbyID True \
                    -output_dir output/ \
                    -skip_data_preprocess

其他 Python脚本说明:

  • feature_engineering.py 特征工程代码
  • ref.py 数据处理和模型推理所需的配置文件
  • utils.py 数据处理所需的一些函数
  • gbdt_feature.py 用gbdt模型生成特征

6.模型推理Python脚本

python code/predict_gbdt_lr.py -data_dir D:/datasets/garbage/ \
                    -use_groupbyID True \
                    -output_dir output/ \
                    -skip_data_preprocess \
                    -save_dir output/ 

  注1:只要同一个ObjID的多条数据的预测结果有一个不是背景零,最终预测结果就不是背景零。

  注2:预测出的Material只会是在训练数据中出现过的唯一标记号。这次数据中不同的唯一标记号共有148个,具体可参见output/log/log.txt中的LabelEncoder.classes

  • 预测结果文件(predictions.csv)说明:对每个物体(即每个ObjID,通常对应多条测试记录)给出多个预测结果汇总后的预测结果。
# 域名 意义
1 ObjID 被测物体唯一标记。同一物体会对应多条测试记录
2 Category 物体分类,从训练数据中获取
3 Material 物体对应的唯一标识号,从训练数据中获取
4 pred_Category 模型所预测出的物体分类
5 pred_Material 模型所预测出的物体唯一标识号
6 pred_background 模型预测的背景和物体 (背景标记为 0,物体标记为 1)
7 pred_Category_final 模型所预测出的物体分类
8 pred_Material_final 模型所预测出的物体材料分类

7. 模型精度

  对于Category、Material和Background三种场景的预测,我们均使用GBDT+LR模型。尝试过SVM、XGBoost、LightGBM和GBDT+LR模型,对比之下,GBDT+LR模型表现最好。   在测试集上的Accuracy如下:

场景 Accuracy
Category 0.7583130575831306
Material 0.6042173560421735
Background 0.996044825313118
Owner
wenqi
Learning is all you need!
wenqi
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022