AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

Overview

AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

AlgoVision

This repository includes the official implementation of our NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations" (Paper @ ArXiv, Video @ Youtube).

algovision is a Python 3.6+ and PyTorch 1.9.0+ based library for making algorithms differentiable. It can be installed via:

pip install algovision

Applications include smoothly integrating algorithms into neural networks for algorithmic supervision, problem-specific optimization within an algorithm, and whatever your imagination allows. As algovision relies on PyTorch it also supports CUDA, etc.

Check out the Documentation!

🌱 Intro

Deriving a loss from a smooth algorithm can be as easy as

from examples import get_bubble_sort
import torch

# Get an array (the first dimension is the batch dimension, which is always required)
array = torch.randn(1, 8, requires_grad=True)

bubble_sort = get_bubble_sort(beta=5)
result, loss = bubble_sort(array)

loss.backward()
print(array)
print(result)
print(array.grad)

Here, the loss is a sorting loss corresponding to the number of swaps in the bubble sort algorithm. But we can also define this algorithm from scratch:

from algovision import (
    Algorithm, Input, Output, Var, VarInt,                                          # core
    Let, LetInt, Print,                                                     # instructions
    Eq, NEq, LT, LEq, GT, GEq, CatProbEq, CosineSimilarity, IsTrue, IsFalse,  # conditions
    If, While, For,                                                   # control_structures
    Min, ArgMin, Max, ArgMax,                                                  # functions
)
import torch

bubble_sort = Algorithm(
    # Define the variables the input corresponds to
    Input('array'),
    # Declare and initialize all differentiable variables 
    Var('a',        torch.tensor(0.)),
    Var('b',        torch.tensor(0.)),
    Var('swapped',  torch.tensor(1.)),
    Var('loss',     torch.tensor(0.)),
    # Declare and initialize a hard integer variable (VarInt) for the control flow.
    # It can be defined in terms of a lambda expression. The required variables
    # are automatically inferred from the signature of the lambda expression.
    VarInt('n', lambda array: array.shape[1] - 1),
    # Start a relaxed While loop:
    While(IsTrue('swapped'),
        # Set `swapped` to 0 / False
        Let('swapped', 0),
        # Start an unrolled For loop. Corresponds to `for i in range(n):`
        For('i', 'n',
            # Set `a` to the `i`th element of `array`
            Let('a', 'array', ['i']),
            # Using an inplace lambda expression, we can include computations 
            # based on variables to obtain the element at position i+1. 
            Let('b', 'array', [lambda i: i+1]),
            # An If-Else statement with the condition a > b
            If(GT('a', 'b'),
               if_true=[
                   # Set the i+1 th element of array to a
                   Let('array', [lambda i: i + 1], 'a'),
                   # Set the i th element of array to b
                   Let('array', ['i'], 'b'),
                   # Set swapped to 1 / True
                   Let('swapped', 1.),
                   # Increment the loss by 1 using a lambda expression
                   Let('loss', lambda loss: loss + 1.),
               ]
           ),
        ),
        # Decrement the hard integer variable n by 1
        LetInt('n', lambda n: n-1),
    ),
    # Define what the algorithm should return
    Output('array'),
    Output('loss'),
    # Set the inverse temperature beta
    beta=5,
)

👾 Full Instruction Set

(click to expand)

The full set of modules is:

from algovision import (
    Algorithm, Input, Output, Var, VarInt,                                          # core
    Let, LetInt, Print,                                                     # instructions
    Eq, NEq, LT, LEq, GT, GEq, CatProbEq, CosineSimilarity, IsTrue, IsFalse,  # conditions
    If, While, For,                                                   # control_structures
    Min, ArgMin, Max, ArgMax,                                                  # functions
)

Algorithm is the main class, Input and Output define arguments and return values, Var defines differentiable variables and VarInt defines non-differentiable integer variables. Eq, LT, etc. are relaxed conditions for If and While, which are respective control structures. For bounded loops of fixed length that are unrolled. Let sets a differentiable variable, LetInt sets a hard integer variable. Note that hard integer variables should only be used if they are independent of the input values, but they may depend on the input shape (e.g., for reducing the number of iterations after each traversal of a For loop). Print prints for debug purposes. Min, ArgMin, Max, and ArgMax return the element-wise min/max/argmin/argmax of a list of tensors (of equal shape).

λ Lambda Expressions

Key to defining an algorithm are lambda expressions (see here for a reference). They allow defining anonymous functions and therefore allow expressing computations in-place. In most cases in algovision, it is possible to write a value in terms of a lambda expressions. The name of the used variable will be inferred from the signature of the expression. For example, lambda x: x**2 will take the variable named x and return the square of it at the location where the expression is written.

Let('z', lambda x, y: x**2 + y) corresponds to the regular line of code z = x**2 + y. This also allows inserting complex external functions including neural networks as part of the lambda expression. Assuming net is a neural networks, one can write Let('y', lambda x: net(x)) (corresponding to y = net(x)).

Let

Let is a very flexible instruction. The following table shows the use cases of it.

AlgoVision Python Description
Let('a', 'x') a = x Variable a is set to the value of variable x.
Let('a', lambda x: x**2) a = x**2 As soon as we compute anything on the right hand side of the equation, we need to write it as a lambda expression.
Let('a', 'array', ['i']) a = array[i] Indexing on the right hand requires an additional list parameter after the second argument.
Let('a', lambda array, i: array[:, i]) a = array[i] Equivalent to the row above: indexing can also be manually done inside of a lambda expression. Note that in this case, the batch dimension has to be written explicitly.
Let('a', 'array', ['i', lambda j: j+1]) a = array[i, j+1] Multiple indices and lambda expressions are also supported.
Let('a', 'array', [None, slice(0, None, 2)]) a = array[:, 0::2] None and slices are also supported.
Let('a', ['i'], 'x') a[i] = x Indexing can also be done on the left hand side of the equation.
Let('a', ['i'], 'x', ['j']) a[i] = x['j'] ...or on both sides.
Let(['a', 'b'], lamba x, y: (x+y, x-y)) a, b = x+y, x-y Multiple return values are supported.

In its most simple form Let obtains two arguments, a string naming the variable where the result is written, and the value that may be expressed via a lambda expression.

If the lambda expression returns multiple values, e.g., because a complex function is called and has two return values, the left argument can be a list of strings. That is, Let(['a', 'b'], lamba x, y: (x+y, x-y)) corresponds to a, b = x+y, x-y.

Let also supports indexing. This is denoted by an additional list argument after the left and/or the right argument. For example, Let('a', 'array', ['i']) corresponds to a = array[i], while Let('array', ['i'], 'b') corresponds to array[i] = b. Let('array', ['i'], 'array', ['j']) corresponding to array[i] = array[j] is also supported.

Note that indexing can also be expressed through lambda expressions. For example, Let('a', 'array', ['i']) is equivalent to Let('a', lambda array, i: array[:, i]). Note how in this case the batch dimension has to be explicitly taken into account ([:, ]). Relaxed indexing on the right-hand side is only supported through lambda expressions due to its complexity. Relaxed indexing on the left-hand side is supported if exactly one probability weight tensor is in the list (e.g., Let('array', [lambda x: get_weights(x)], 'a')).

LetInt only supports setting the variable to an integer (Python int) or list of integers (as well as the same type via lambda expressions). Note that hard integer variables should only be used if they are independent of the input values, but they may depend on the input shape.

If you need help implementing your differentiable algorithm, you may schedule an appointment. This will also help me improve the documentation and usability.

🧪 Experiments

The experiments can be found in the experiments folder. Additional experiments will be added soon.

🔬 Sorting Supervision

The sorting supervision experiment can be run with

python experiments/train_sort.py

or by checking out this Colab notebook.

📖 Citing

If you used our library, please cite it as

@inproceedings{petersen2021learning,
  title={{Learning with Algorithmic Supervision via Continuous Relaxations}},
  author={Petersen, Felix and Borgelt, Christian and Kuehne, Hilde and Deussen, Oliver},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

📜 License

algovision is released under the MIT license. See LICENSE for additional details.

Owner
Felix Petersen
Researcher @ University of Konstanz
Felix Petersen
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022