用Resnet101+GPT搭建一个玩王者荣耀的AI

Overview

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀

本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

注意运行本代码需要注意以下几点 注意!!!!!

1、目前这个模型在用后裔100多局对战数据下训练出来后,对局表现出各种送人头之类的问题,以及代码本身各种不规范,请多原谅。
2、本代码本来只是我试验模型能否玩王者荣耀,B站朋友强烈要求开源。仓促开源估计问题很多,请多原谅。
三、运行环境win10;win7未测试,估计是可以。 需要一张6G或以上显存的英伟达显卡,虽然4G的1050ti勉强也可以。
四、需要一台打开安卓调试并能玩王者荣耀的手机,虚拟机没有试过,理论上应该可行。
五、需要下载scrcpy 的windows版本。 把所有文件解压到项目根目录即可(这是我的笨办法) 。
位置如图
scrcpy
六、pyminitouch库运行时会自动安装minitouch。如果无法自动安装则需要手动安装minitouch ,比较麻烦,如有困难请多多百度。
还有,minitouch不支持Android10
七、本人用的手机分辨率是1080*2160的,本代码并没有针对不同的手机做优化。不同的手机minitouch命令中所描述的位置会有差异,需要对代码做出相应调整,请务必注意。
八、注意游戏的布局,务必要一样。布局可参考B站视频或者我上传的训练用截图。如图。
布局图
九、游戏更新以后可能会导致无法预料的后果,因此并不能保证此代码玩王者荣耀的长期有效性。
我之后可能出视频教程,同时讲讲我的设计思路。部分地区截图不可见,可下载项目在pycharm下打开readme.md即可见。

运行与生成训练数据

需要的库
torch
torchvision
pynput
pyminitouch
可能还有其它库

运行训练好的模型

如果前面的工作做好了就可以把模型跑起来了,这里声明这个经过训练的模型仅仅训练100多局,水平很低,青铜人机都未必能打过。
一、首先下载模型 你可以从google云盘 下载训练过的模型,也可以百度网盘下载
链接:https://pan.baidu.com/s/1Bt7BXukDDCpc1aWFI2iKxg
提取码:5c1k
后放入weights文件夹下
二、先运行 “启动和结束进程.py” 启动scrcpy 把“训练数据截取_A.py” 中的两项改成你的,_DEVICE_ID 是 adb devices后显示的那个id
启动和结束进程.py
三、启动王者荣耀进入5v5人机对战 运行 “训练数据截取_A.py” 即可。

生成训练数据

运行 “训练数据截取_A.py” 时可以通过按键操控角色,这时就可以生成训练用的数据,如果没有操控则会生成一个空文件夹和空json文件。
按"i"键则结束或则是重新运行
按键'w' 's ' 'a' 'd'控制方向 左、下、右箭头对应是1、2、3技能,上箭头长按则攻击。其它按键请参考源码。
每次获取训练图片最好不要超过5000张

你也可以下载训练数据样本(只是样本,数据量不大,不能指望两局对战数据就有效果,我估计这个模型现有参数可以吃下上万场的对战数据)
百度网盘 链接:https://pan.baidu.com/s/1Ak1sLcSRimMWRgagXGahTg 提取码:t4k3
google云盘
解压后注意存放位置,请参考源码。

如何训练

一、数据预处理
将图片用resnet101预处理后再和对应操作数据一起处理后用numpy数组储存备用。
具体要做的就是运行 “处理训练数据5.py”
二、训练
预处理完成以后运行 “训练_B.py”即可。

游戏按键映射本地化

按键映射通过 './json/名称_操作.json' 文件完成,如前文所述,由minitouch进行按压模拟。

  1. 前期准备:

开启“开发者模式”,允许“USB调试”,允许“USB调试(安全设置):允许通过USB调试修改权限或模拟点击”。后两项均在进入开发者选项后可以找到。

  1. 按键可视化,按键轨迹监控:

开启“显示点按操作的视觉反馈”,开启“指针位置”。后者方便查看自己手机屏幕点按的像素点坐标信息,从而生成对应本地手机按键映射的.json文件。

  1. 映射本地化计算说明:

layout_description 此计算以手机充电口朝右握持为例,反向握持同理可推。样例手机分辨率1080x2160。 Android“指针位置”中显示的坐标信息以图中左上角红色原点所示,xy轴如图。此原点不论如何握持(充电口朝左或右),其始终保持在视野左上角,由重力感应判定。 minitouch坐标原点如图中左下角蓝色原点所示,此点为物理固定点,不随手机握持方向改变,反向握持此点在右上角。 另外注意两个坐标系xy轴方向不同。 在图中设定下,Android指针坐标(X,Y)对应minitouch坐标(1080-Y,X):即在点按屏幕中某点时,安卓调试显示的(X,Y)在.json文件中的坐标应为(1080-Y,X)。

  1. 本地映射文件生成:

'check_json.py'为调试和生成本地.json按键映射文件的脚本。重映射时请一一记录每个按键在自己手机中显示的“指针位置”,并按照上述计算方法换算为.json文件中需 要输入的坐标。此脚本会生成一个'./json/local_layout.json'文件,请在'处理训练数据5.py'中进行相应替换。 此外,'处理训练数据5.py'中:‘加一技能’,‘加二技能’,‘加三技能’,‘购买’变量也许进行同样处理。.json文件中指令含义请参照minitouch

Owner
冯泉荔
冯泉荔
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022