CMT: Convolutional Neural Networks Meet Vision Transformers

Overview

CMT: Convolutional Neural Networks Meet Vision Transformers

[arxiv]

1. Introduction

model This repo is the CMT model which impelement with pytorch, no reference source code so this is a non-official version.

2. Enveriments

  • python 3.7+
  • pytorch 1.7.1
  • pillow
  • apex
  • opencv-python

You can see this repo to find how to install the apex

3. DataSet

  • Trainig
    /data/home/imagenet/train/xxx.jpeg, 0
    /data/home/imagenet/train/xxx.jpeg, 1
    ...
    /data/home/imagenet/train/xxx.jpeg, 999
    
  • Testing
    /data/home/imagenet/test/xxx.jpeg, 0
    /data/home/imagenet/test/xxx.jpeg, 1
    ...
    /data/home/imagenet/test/xxx.jpeg, 999
    

4. Training & Inference

  1. Training

    CMT-Tiny

    #!/bin/bash
    OMP_NUM_THREADS=1
    MKL_NUM_THREADS=1
    export OMP_NUM_THREADS
    export MKL_NUM_THREADS
    cd CMT-pytorch;
    CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore -m torch.distributed.launch --nproc_per_node 8 train.py --batch_size 512 --num_workers 48 --lr 6e-3 --optimizer_name "adamw" --tf_optimizer 1 --cosine 1 --model_name cmtti --max_epochs 300 \
    --warmup_epochs 5 --num-classes 1000 --input_size 184 \ --crop_size 160 --weight_decay 1e-1 --grad_clip 0 --repeated-aug 0 --max_grad_norm 5.0 
    --drop_path_rate 0.1 --FP16 0 --qkv_bias 1 
    --ape 0 --rpe 1 --pe_nd 0 --mode O2 --amp 1 --apex 0 \ 
    --train_file $file_folder$/train.txt \
    --val_file $file_folder$/val.txt \
    --log-dir $save_folder$/log_dir \
    --checkpoints-path $save_folder$/checkpoints
    

    Note: If you use the bs 128 * 8 may be get more accuracy, balance the acc & speed.

  2. Inference

    #!/bin/bash
    cd CMT-pytorch;
    CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore test.py \
    --dist-url 'tcp://127.0.0.1:9966' --dist-backend 'nccl' --multiprocessing-distributed=1 --world-size=1  --rank=0 
    --batch-size 128 --num-workers 48 --num-classes 1000 --input_size 184 --crop_size 160 \
    --ape 0 --rpe 1 --pe_nd 0 --qkv_bias 1 --swin 0 --model_name cmtti --dropout 0.1 --emb_dropout 0.1 \
    --test_file $file_folder$/val.txt \
    --checkpoints-path $save_folder$/checkpoints/xxx.pth.tar \
    --save_folder $save_folder$/acc_logits/
  3. calculate acc

    python utils/calculate_acc.py --logits_file $save_folder$/acc_logits/

5. Imagenet Result

model-name input_size FLOPs Params [email protected]_crop(ours) acc(papers) weights
CMT-T 160x160 516M 11.3M 75.124% 79.2% weights
CMT-T 224x224 1.01G 11.3M 78.4% - weights
CMT-XS 192x192 - - - 81.8% -
CMT-S 224x224 - - - 83.5% -
CMT-L 256x256 - - - 84.5% -

6. TODO

  • Other result may comming sonn if someone need.
  • Release the CMT-XS result on the imagenet.
  • Check the diff with papers, author give the hyparameters on the issue
  • Adjusting the best hyperparameters for CMT or transformers

Supplementary

If you want to know more, I give the CMT explanation, as well as the tuning and training process on here.

Owner
FlyEgle
JOYY AI GROUP - Machine Learning Engineer(Computer Vision)
FlyEgle
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022