Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Related tags

Deep LearningGGE
Overview

Greedy Gradient Ensemble for De-biased VQA

Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can extend to other tasks with dataset biases.

@inproceedings{han2015greedy,
	title={Greedy Gradient Ensemble for Robust Visual Question Answering},
	author={Han, Xinzhe and Wang, Shuhui and Su, Chi and Huang, Qingming and Tian, Qi},
	booktitle={Proceedings of the IEEE international conference on computer vision},
	year={2021}
}

Prerequisites

We use Anaconda to manage our dependencies . You will need to execute the following steps to install all dependencies:

  • Edit the value for prefix variable in requirements.yml file, by assigning it the path to conda environment

  • Then, install all dependencies using: conda env create -f requirements.yml

  • Change to the new environment: bias

Data Setup

  • Download UpDn features from google drive into /data/detection_features folder
  • Download questions/answers for VQAv2 and VQA-CPv2 by executing bash tools/download.sh
  • Download visual cues/hints provided in A negative case analysis of visual grounding methods for VQA into data/hints. Note that we use caption based hints for grounding-based method reproduction, CGR and CGW.
  • Preprocess process the data with bash tools/process.sh

Training GGE

Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias gradient --topq 1 --topv -1 --qvp 5 --output [] 

to train a model. In main.py, import base_model for UpDn baseline; import base_model_ban as base_model for BAN baseline; import base_model_block as base_model for S-MRL baseline.

Set MODE as gge_iter and gge_tog for our best performance model; gge_d_bias and gge_q_bias for single bias ablation; base for baseline model.

Training ablations in Sec. 3 and Sec. 5

For models in Sec. 3, execute from train_ab import train and import base_model_ab as base_model in main.py. Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias METHODS --topq 1 --topv -1 --qvp 5 --output [] 

METHODS learned_mixin for LMH, MODE inv_sup for inv_sup strategy, v_inverse for inverse hint. Note that the results for HINT$_inv$ is obtained by running the code from A negative case analysis of visual grounding methods for VQA.

To test v_only model, import base_model_v_only as base_model in main.py.

To test RUBi and LMH+RUBi, run

CUDA_VISIBLE_DEVICES=0 python rubi_main.py --dataset cpv2 --mode MODE --output [] 

MODE updn is for RUBi, lmh_rubi is for LMH+RUBi.

Testing

For test stage, we output the overall Acc, CGR, CGW and CGD at threshold 0.2. change base_model to corresponding model in sensitivity.py and run

CUDA_VISIBLE_DEVICES=0 python sensitivity.py --dataset cpv2 --debias METHOD --load_checkpoint_path logs/your_path --output your_path

Visualization

We provide visualization in visualization.ipynb. If you want to see other visualization by yourself, download MS-COCO 2014 to data/images.

Acknowledgements

This repo uses features from A negative case analysis of visual grounding methods for VQA. Some codes are modified from CSS and UpDn.

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
JugLab 33 Dec 30, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022