This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

Overview

MLProject_01

This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

Context

Dataset

English question data set file

Feature Description

question answering

English data set data:

check answer

Create a Virtual Environment

Clone the repo:

git clone 
   
    
cd MLProject_01 

   

For the project, virtualenv is used. To install virtualenv:

pip install virtualenv

To create a virtual environment:

virtualenv venv

If it doesn't work then try:

python -m virtualenv venv

Activate the Virtual Environment:

For Windows:

.\venv\Scripts\activate

For Linux and MacOS:

source venv/bin/activate

Install Dependencies

Install the dependencies:

pip install -r requirements.txt

Build Docker Image

To build a Docker image:

docker build -t  .

TO run the image as a container:

docker run --rm -it -p 9696:9696 :latest

To test the prediction API running in docker, run _test.py locally.

Run the Jupyter Notebook

Run Jupiter notebook using the following command assuming we are inside the project directory:

jupyter notebook

Run the Model Locally

The final model training codes are exported in this file. To train the model:

python train.py

For local deployment, start up the Flask server for prediction API:

python predict.py

Or use a WSGI server, Waitress to run:

waitress-serve --listen=0.0.0.0:9696 predict:app

It will run the server on localhost using port 9696.

Finally, send a request to the prediction API http://localhost:9696/predict and get the response:

python predict_test.py

Run the Model in Cloud

The model is deployed on **Heroku ** and can be accessed using:

https://bank-marketing-system.herokuapp.com/predict

The API takes a JSON array of records as input and returns a response JSON array.

How to deploy a basic Flask application to Pythonanywhere can be found here. Only upload the .csv, train.py, and .py files inside the app directory. Then open a terminal and run train.py and predict.py files. Finally, reload the application. If everything is okay, then the API should be up and running.

To test the cloud API, again run _test.py from locally using the cloud API URL.

Owner
Hadi Nakhi
Full Stack Developer-Research & Learning About Machine Learning
Hadi Nakhi
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022