Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Related tags

Deep LearningMetaD2A
Overview

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets

This is the official PyTorch implementation for the paper Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR 2021) : https://openreview.net/forum?id=rkQuFUmUOg3.

Abstract

Despite the success of recent Neural Architecture Search (NAS) methods on various tasks which have shown to output networks that largely outperform human-designed networks, conventional NAS methods have mostly tackled the optimization of searching for the network architecture for a single task (dataset), which does not generalize well across multiple tasks (datasets). Moreover, since such task-specific methods search for a neural architecture from scratch for every given task, they incur a large computational cost, which is problematic when the time and monetary budget are limited. In this paper, we propose an efficient NAS framework that is trained once on a database consisting of datasets and pretrained networks and can rapidly search a neural architecture for a novel dataset. The proposed MetaD2A (Meta Dataset-to-Architecture) model can stochastically generate graphs (architectures) from a given set (dataset) via a cross-modal latent space learned with amortized meta-learning. Moreover, we also propose a meta-performance predictor to estimate and select the best architecture without direct training on target datasets. The experimental results demonstrate that our model meta-learned on subsets of ImageNet-1K and architectures from NAS-Bench 201 search space successfully generalizes to multiple benchmark datasets including CIFAR-10 and CIFAR-100, with an average search time of 33 GPU seconds. Even under a large search space, MetaD2A is 5.5K times faster than NSGANetV2, a transferable NAS method, with comparable performance. We believe that the MetaD2A proposes a new research direction for rapid NAS as well as ways to utilize the knowledge from rich databases of datasets and architectures accumulated over the past years.

Framework of MetaD2A Model

Prerequisites

  • Python 3.6 (Anaconda)
  • PyTorch 1.6.0
  • CUDA 10.2
  • python-igraph==0.8.2
  • tqdm==4.50.2
  • torchvision==0.7.0
  • python-igraph==0.8.2
  • nas-bench-201==1.3
  • scipy==1.5.2

If you are not familiar with preparing conda environment, please follow the below instructions

$ conda create --name metad2a python=3.6
$ conda activate metad2a
$ conda install pytorch==1.6.0 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ conda install -c conda-forge tqdm
$ conda install -c conda-forge python-igraph
$ pip install scipy

And for data preprocessing,

$ pip install requests

Hardware Spec used for experiments of the paper

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

NAS-Bench-201

Go to the folder for NAS-Bench-201 experiments (i.e. MetaD2A_nas_bench_201)

$ cd MetaD2A_nas_bench_201

Data Preparation

To download preprocessed data files, run get_files/get_preprocessed_data.py:

$ python get_files/get_preprocessed_data.py

It will take some time to download and preprocess each dataset.

To download MNIST, Pets and Aircraft Datasets, run get_files/get_{DATASET}.py

$ python get_files/get_mnist.py
$ python get_files/get_aircraft.py
$ python get_files/get_pets.py

Other datasets such as Cifar10, Cifar100, SVHN will be automatically downloaded when you load dataloader by torchvision.

If you want to use your own dataset, please first make your own preprocessed data, by modifying process_dataset.py .

$ process_dataset.py

MetaD2A Evaluation (Meta-Test)

You can download trained checkpoint files for generator and predictor

$ python get_files/get_checkpoint.py
$ python get_files/get_predictor_checkpoint.py

1. Evaluation on Cifar10 and Cifar100

By set --data-name as the name of dataset (i.e. cifar10, cifar100), you can evaluate the specific dataset only

# Meta-testing for generator 
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 --test --load-epoch 400 --num-gen-arch 500 --data-name {DATASET_NAME}

After neural architecture generation is completed, meta-performance predictor selects high-performing architectures among the candidates

# Meta-testing for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 --test --num-gen-arch 500 --data-name {DATASET_NAME}

2. Evaluation on Other Datasets

By set --data-name as the name of dataset (i.e. mnist, svhn, aircraft, pets), you can evaluate the specific dataset only

# Meta-testing for generator
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 --test --load-epoch 400 --num-gen-arch 50 --data-name {DATASET_NAME}

After neural architecture generation is completed, meta-performance predictor selects high-performing architectures among the candidates

# Meta-testing for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 --test --num-gen-arch 50 --data-name {DATASET_NAME}

Meta-Training MetaD2A Model

You can train the generator and predictor as follows

# Meta-training for generator
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 
                 
# Meta-training for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 

Results

The results of training architectures which are searched by meta-trained MetaD2A model for each dataset

Accuracy

CIFAR10 CIFAR100 MNIST SVHN Aircraft Oxford-IIT Pets
PC-DARTS 93.66±0.17 66.64±0.04 99.66±0.04 95.40±0.67 46.08±7.00 25.31±1.38
MetaD2A (Ours) 94.37±0.03 73.51±0.00 99.71±0.08 96.34±0.37 58.43±1.18 41.50±4.39

Search Time (GPU Sec)

CIFAR10 CIFAR100 MNIST SVHN Aircraft Oxford-IIT Pets
PC-DARTS 10395 19951 24857 31124 3524 2844
MetaD2A (Ours) 69 96 7 7 10 8

MobileNetV3 Search Space

Go to the folder for MobileNetV3 Search Space experiments (i.e. MetaD2A_mobilenetV3)

$ cd MetaD2A_mobilenetV3

And follow README.md written for experiments of MobileNetV3 Search Space

Citation

If you found the provided code useful, please cite our work.

@inproceedings{
    lee2021rapid,
    title={Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets},
    author={Hayeon Lee and Eunyoung Hyung and Sung Ju Hwang},
    booktitle={ICLR},
    year={2021}
}

Reference

Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022