Pointer networks Tensorflow2

Overview

Pointer networks Tensorflow2

原文:https://arxiv.org/abs/1506.03134
仅供参考与学习,内含代码备注

环境

tensorflow==2.6.0
tqdm
matplotlib
numpy

《pointer networks》阅读笔记

应用场景:

文本摘要,凸包问题,Roundelay 三角剖分,旅行商问题

其中包括一些Latex,github无法渲染,所以建议clone下来用Typora查看。

abstract

本文提出一种新的网络结构:输出序列的元素是与输入序列中的位置相对应的离散标记。

an output sequence with elements that are discrete tokens corresponding to positions in an input sequence.

这种问题目前可以被一些现有的方法解决:sequence-to-sequence, neural turing machines。但是这些方法不是特别适用。

本文解决的问题是sorting variable sized sequences,以及各种组合优化问题。本模型使用attention机制来解决变化尺寸的输出。

intro

RNN模型的输出维度是固定的,sequence-to-sequence模型移除了这一个限制,通过用一个RNN把输入映射为一个embedding,又用一个RNN把embedding映射到输出序列。

但是这些sequence-to-sequence 方法都是固定大小的词汇表。

例如词汇表中只存在A,B,C。那么输入

1,2,3 ----> A,B,C

1,2,3,4 ----> A,B,C,A

本文提出的框架适用于输出的词汇表大小取决于输入问题的大小

image-20211105133740833

image-20211105134312635

左图:seq-2-seq

蓝色RNN,输出一个向量。

紫色RNN,利用概率的链式法则,输出一个固定维度。

本文的贡献如下:

  1. 提出一种新的结构,称为指针网路。简单且高效
  2. 良好的泛化性能
  3. 一个TSP近似求解器

Models

sequence-to-sequence 模型

训练数据为: $$ (P,C^P) $$ 其中,$\mathcal{P}=\left{P_{1}, \ldots, P_{n}\right}$,是n个向量。$\mathcal{C}^{\mathcal{P}}=\left{C_{1}, \ldots, C_{m(\mathcal{P})}\right}$ ,n个对应的结果,$m(\mathcal{P})\in [1,n]$ 。传统的sequence-to-sequence的$\mathcal{C}^{\mathcal{P}}$是固定大小的,但是要提前给定。本文的$\mathcal{C}^{\mathcal{P}}$为n,根据输入改变。

如果模型的参数记为$\theta$,神经网络模型表达为: $$ p(C^P|P,\theta) $$ 使用链式法则,写为: $$ p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta\right)=\prod_{i=1}^{m(\mathcal{P})} p_{\theta}\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P} ; \theta\right) $$ 训练阶段,最大似然概率: $$ \theta^{*}=\underset{\theta}{\arg \max } \sum_{\mathcal{P}, \mathcal{C}^{\mathcal{P}}} \log p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta\right) $$ input sequence的末端加一个$\Rightarrow$,代表进入生成阶段,$\Leftarrow$代表结束生成阶段。

推断: $$ \hat{\mathcal{C}}^{\mathcal{P}}=\underset{\mathcal{C}^{\mathcal{P}}}{\arg \max } p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta^{*}\right) $$

content based input attention

对于attention机制,请查看《Neural Machine Translation By Jointly Learning To Align And Translate》阅读笔记。

对于LSTM RNN $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) & j \in(1, \ldots, n) \ a_{j}^{i} &=\operatorname{softmax}\left(u_{j}^{i}\right) & j \in(1, \ldots, n) \ d_{i}^{\prime} &=\sum_{j=1}^{n} a_{j}^{i} e_{j} & \end{aligned} $$ 对于这个传统的attention机制,可以看到$u^{i}$, 是一个长度为$n$的向量。

这样的话,在解码器的每一个时间步迭代都会得到一个 n 长度的向量,可以作为指针,用于指向之前的 n 长度的序列。

Ptr-Net

所以Ptr-Net计算公式写为: $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) \quad j \in(1, \ldots, n) \ p\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P}\right) &=\operatorname{softmax}\left(u^{i}\right) \end{aligned} $$ image-20211111103159924

image-20211111110334755

数据以 [Batch, time_steps, feature] 的形式进入编码器LSTM(绿色部分),在时间步上迭代$n$次以后,得到:

  • n 个 e [batch, units], 可以合并写为 [batch, n, units]

  • 最后一个时间步输出的 c [batch, units]

进入到解码器LSTM(蓝色部分),输入为:

  • 上次得到解码得到的的pointer,如果是第一次则为initial pointer
  • 上次的状态d,c

pointer 如何得到?计算公式如下: $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) \quad j \in(1, \ldots, n) \ p\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P}\right) &=\operatorname{softmax}\left(u^{i}\right) \end{aligned} $$

motivation and datasets structure

文章是为了解决三种问题,凸包,Delaunay Triangulation,旅行商问题。在此只对旅行商问题进行探讨。

travelling salesman problem

给定一个城市列表,我们希望找到一条最短的路线,每个城市只访问一次,然后返回起点。此外,假设两个城市之间的距离在正反方向上是相同的。这是一个NP难问题,测试模型的能力和局限性。

数据生成:

卡迪尔坐标系(二维),$[0,1] \times[0,1]$

使用 Held-Karp algorithm 得到准确解,n最多为20。

A1,A2,A3为三种其他算法。A1,A2时间复杂度为$O\left(n^{2}\right)$,A3时间复杂度为$O\left(n^{3}\right)$。A3,Christofides algorithm 算法保证在距离最佳长度1.5倍的范围内找到解,详细信息查看原文参考文献。生成1M个数据进行训练。

image-20211111111416012

分析表格:

  1. n=5的时候,性能都很好
  2. n=10,ptr-net的性能比A1好
  3. n=50的时候,无法超过数据集性能(因为ptr-net使用不准确的答案进行训练的)
  4. 只用n少的训练,推广到大n情况,性能不太好。

对于n=30的情况,Ptr-net算法复杂度为$O(n \log n)$,远低于A1,A2,A3。却有相似的性能,说明可发展空间还是很大的。

You might also like...
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

Releases(v0)
Owner
HUANG HAO
Program = Algorithm + Data structure
HUANG HAO
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022