PyTorch implementation for View-Guided Point Cloud Completion

Related tags

Deep LearningViPC
Overview

ViPC: View-Guided Point Cloud Completion

PyTorch implementation of ViPC (View-Guided Point Cloud Completion)

Introduction

This work is accepted by CVPR 2021. We present a view-guided solution for the task of point cloud completion. Unlike most existing methods directly inferring the missing points using shape priors, we address this task by introducing ViPC (view-guided point cloud completion) that takes the missing crucial global structure information from an extra single-view image. Besides, we build a large-scale dataset for the point cloud completion task on the ShapeNet dataset. This dataset simulates point cloud defects caused by various kinds of occlusions.You can also check out paper for a deeper introduction.

Citation

if you find our work useful in your research, please consider citing:

@inproceedings{zhang2021vipc,
  title={View-Guided Point Cloud Completion},
  author={Zhang, Xuancheng and Feng, Yutong and Li, Siqi and Zou, Changqing and Wan, Hai and Zhao, Xibin and Guo, Yandong and Gao, Yue},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={15890--15899},
  year={2021}
}

Usage

Installation

Install PyTorch over 1.4. The code has been tested with Python 3.7, PyTorch 1.7.0 and CUDA 10.1 on Ubuntu 20.04 and GTX 1080Ti. Note that RTX graphics card with Tensor Core may not be able to run part of the code.

Data Prepare

First, please download the ShapeNetViPC-Dataset (143GB, code: ar8l). Then run cat ShapeNetViPC-Dataset.tar.gz* | tar zx, you will get ShapeNetViPC-Dataset contains three floders: ShapeNetViPC-Partial, ShapeNetViPC-GT and ShapeNetViPC-View.

For each object, the dataset include partial point cloud (ShapeNetViPC-Patial), complete point cloud (ShapeNetViPC-GT) and corresponding images (ShapeNetViPC-View) from 24 different views. You can find the detail of 24 cameras view in /ShapeNetViPC-View/category/object_name/rendering/rendering_metadata.txt.

unzip train_test_list.zip, you will get train and test list. Use the code in utils/dataloader.py to load the dataset.

The remaining code will be open source soon!!!

License

Our code is released under MIT License (see LICENSE file for details).

SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022