Transformers and related deep network architectures are summarized and implemented here.

Overview

Transformers: from NLP to CV

cover

This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV)

  1. Introduction
  2. ViT: Transformers for Computer Vision
  3. Visualizing the attention Open In Colab
  4. MLP-Mixer Open In Colab
  5. Hybrid MLP-Mixer + ViT Open In Colab
  6. ConvMixer Open In Colab
  7. Hybrid ConvMixer + MLP-Mixer Open In Colab

1) Introduction

What is wrong with RNNs and CNNs

Learning Representations of Variable Length Data is a basic building block of sequence-to-sequence learning for Neural machine translation, summarization, etc

  • Recurrent Neural Networks (RNNs) are natural fit variable-length sentences and sequences of pixels. But sequential computation inhibits parallelization. No explicit modeling of long and short-range dependencies.
  • Convolutional Neural Networks (CNNs) are trivial to parallelize (per layer) and exploit local dependencies. However, long-distance dependencies require many layers.

Attention!

The Transformer archeticture was proposed in the paper Attention is All You Need. As mentioned in the paper:

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely"

"Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train"

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language). One basic and well known neural network architecture for NMT is called sequence-to-sequence seq2seq and it involves two RNNs.

  • Encoder: RNN network that encodes the input sequence to a single vector (sentence encoding)
  • Decoder: RNN network that generates the output sequences conditioned on the encoder's output. (conditioned language model)

seqseq

The problem of the vanilla seq2seq is information bottleneck, where the encoding of the source sentence needs to capture all information about it in one vector.

As mentioned in the paper Neural Machine Translation by Jointly Learning to Align and Translate

"A potential issue with this encoder–decoder approach is that a neural network needs to be able to compress all the necessary information of a source sentence into a fixed-length vector. This may make it difficult for the neural network to cope with long sentences, especially those that are longer than the sentences in the training corpus."

attention001.gif

Attention provides a solution to the bottleneck problem

  • Core idea: on each step of the decoder, use a direct connection to the encoder to focus on a particular part of the source sequence. Attention is basically a technique to compute a weighted sum of the values (in the encoder), dependent on another value (in the decoder).

The main idea of attention can be summarized as mention the OpenAi's article:

"... every output element is connected to every input element, and the weightings between them are dynamically calculated based upon the circumstances, a process called attention."

Query and Values

  • In the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values)
  • The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
  • Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

2) Transformers for Computer Vision

Transfomer based architectures were used not only for NLP but also for computer vision tasks. One important example is Vision Transformer ViT that represents a direct application of Transformers to image classification, without any image-specific inductive biases. As mentioned in the paper:

"We show that reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks"

"Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks"

vit

As we see, an input image is splitted into patches which are treated the same way as tokens (words) in an NLP application. Position embeddings are added to the patch embeddings to retain positional information. Similar to BERT’s class token, a classification head is attached here and used during pre-training and fine-tuning. The model is trained on image classification in supervised fashion.

Multi-head attention

The intuition is similar to have a multi-filter in CNNs. Here we can have multi-head attention, to give the network more capacity and ability to learn different attention patterns. By having multiple different layers that generate (or project) the vectors of queries, keys and values, we can learn multiple representations of these queries, keys and values.

mha

Where each token is projected (in a learnable way) into three vecrors Q, K, and V:

  • Q: Query vector: What I want
  • K: Key vector: What type of info I have
  • V: Value vector: What actual info I have

3) Visualizing the attention

Open In Colab

The basic ViT architecture is used, however with only one transformer layer with one (or four) head(s) for simplicity. The model is trained on CIFAR-10 classification task. The image is splitted in to 12 x 12 = 144 patches as usual, and after training, we can see the 144 x 144 attention scores (where each patch can attend to the others).

imgpatches

Attention map represents the correlation (attention) between all the tokens, where the sum of each row equals 1 representing the probability distribution of attention from a query patch to all others.

attmap

Long distance attention we can see two interesting patterns where background patch attends to long distance other background patches, and this flight patch attends to long distance other flight patches.

attpattern

We can try more heads and more transfomer layers and inspect the attention patterns.

attanim


4) MLP-Mixer

Open In Colab

MLP-Mixer is proposed in the paper An all-MLP Architecture for Vision. As mentioned in the paper:

"While convolutions and attention are both sufficient for good performance, neither of them is necessary!"

"Mixer is a competitive but conceptually and technically simple alternative, that does not use convolutions or self-attention"

Mixer accepts a sequence of linearly projected image patches (tokens) shaped as a “patches × channels” table as an input, and maintains this dimensionality. Mixer makes use of two types of MLP layers:

mixer

  • Channel-mixing MLPs allow communication between different channels, they operate on each token independently and take individual rows of the table as inputs
  • Token-mixing MLPs allow communication between different spatial locations (tokens); they operate on each channel independently and take individual columns of the table as inputs.

These two types of layers are interleaved to enable interaction of both input dimensions.

"The computational complexity of the network is linear in the number of input patches, unlike ViT whose complexity is quadratic"

"Unlike ViTs, Mixer does not use position embeddings"

It is commonly observed that the first layers of CNNs tend to learn detectors that act on pixels in local regions of the image. In contrast, Mixer allows for global information exchange in the token-mixing MLPs.

"Recall that the token-mixing MLPs allow global communication between different spatial locations."

vizmixer

The figure shows hidden units of the four token-mixing MLPs of Mixer trained on CIFAR10 dataset.


5) Hybrid MLP-Mixer and ViT

Open In Colab

We can use both the MLP-Mixer and ViT in one network architecture to get the best of both worlds.

mixvit

Adding a few self-attention sublayers to mixer is expected to offer a simple way to trade off speed for accuracy.


6) CovMixer

Open In Colab

Patches Are All You Need?

Is the performance of ViTs due to the inherently more powerful Transformer architecture, or is it at least partly due to using patches as the input representation.

ConvMixer, an extremely simple model that is similar in many aspects to the ViT and the even-more-basic MLP-Mixer

Despite its simplicity, ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet.

While self-attention and MLPs are theoretically more flexible, allowing for large receptive fields and content-aware behavior, the inductive bias of convolution is well-suited to vision tasks and leads to high data efficiency.

ConvMixers are substantially slower at inference than the competitors!

conmixer01


7) Hybrid MLP-Mixer and CovMixer

Open In Colab

Once again, we can use both the MLP-Mixer and ConvMixer in one network architecture to get the best of both worlds. Here is a simple example.

convmlpmixer


References and more information

Owner
Ibrahim Sobh
Ibrahim Sobh
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning English | 中文 ❗ Now we provide inferencing code and pre-training models

164 Jan 02, 2023
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022