Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Overview

Self Supervised clusterer

Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retaining interesting image latent representations in the feature space using contrastive learning.

Installation

Currently successfully tested on Ubuntu 18.04 and Ubuntu 20.04, with python 3.6 and 3.8

Works for Pytorch versions >= 1.4. Launch following command to install all pd

pip3 install -r requirements.txt

Logs

All information is logged to tensorboard. If you activate the neptune flag, you can also make logs to Neptune.ai.

Tensorboard

To check logs of your trainings using tensorboard, use the command :

tensorboard --logdir=./logs/NAME_OF_TEST/events

The NAME_OF_TEST is generated automatically for each automatic training you launch, composed of the inputed name of the training you chose (explained further below in commands), and the exact date and time when you launched the training. For example test_on_nocadozole_20210518-153531

Neptune

Before using neptune as a log and output control tool, you need to create a neptune account and get your developer token. Create a neptune_token.txt file and store the token in it.

Create in neptune a folder for your outputs, with a name of your choice, then go to main.py and modify from line 129 :

if args.offline :
    CONNECTION_MODE = "offline"
    run = neptune.init(project='USERNAME/PROJECT_NAME',# You should add your project name and username here
                   api_token=token,
                   mode=CONNECTION_MODE,
                   )
else :
    run = neptune.init(project='USERNAME/PROJECT_NAME',# You should add your project name and username here
               api_token=token,
               )

Preparing your own data

All datasets will be put in the ./data folder. As you might have to create various different datasets inside, create a folder inside for each dataset you use, while giving it a linux-friendly name.

To be completed

Commands

  • Adding the --labels command means you have ground truth for classes, and you wish to use it in evaluation

  • Adding the --neptune command means you wish to log your data in neptune (Check logging section)

  • output_k is the number of clusters

  • model_name is the name you'll use to keep track of this specific model. Date of training launch will be added to its name.

  • augmentation is the contrastive loss augmentation types you'll be using. They can be consulted and modified in the datasets/datasetgetter.py file.

  • epochs is the maximal number of epochs you wish to have. It is 1000 by default

  • batch_size is the training batch size. Default is 32

  • val_batch is the validation batch size. Default is 10

  • sty_dim is the size of the style vector. default is 128

  • img_size size of input images

  • --debug is a flag for activating debug mode, where the training is very fast, just to check if everything is working fine

training from scratch
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation BBC --data_type BBBC021_196  --data_folder N1 --neptune --img_size 196
training using pretrained model
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation improved_v2 --data_type BBBC021_196  --data_folder ND8D --labels --neptune --load_model testing_high_cluster_number_20210604-024131_
valiadtion using pretrained model
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation improved_v2 --data_type BBBC021_196  --data_folder ND8D --labels --validation --neptune --load_model testing_high_cluster_number_20210604-024131_
Owner
Bendidi Ihab
Computational Biologist & DL Eng
Bendidi Ihab
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022