Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

Related tags

Deep LearningAOS
Overview

AOS: Airborne Optical Sectioning

Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned aircraft, to sample images within large (synthetic aperture) areas from above occluded volumes, such as forests. Based on the poses of the aircraft during capturing, these images are computationally combined to integral images by light-field technology. These integral images suppress strong occlusion and reveal targets that remain hidden in single recordings.

Single Images Airborne Optical Sectioning
single-images AOS

Source: Video on YouTube | FLIR

This repository contains software modules for drone-based search and rescue applications with airborne optical sectioning, as discussed in our publications. It is made available under a dual licence model.

Contacts

Univ.-Prof. Dr. Ing. habil. Oliver Bimber

Johannes Kepler University Linz
Institute of Computer Graphics
Altenberger Straße 69
Computer Science Building
3rd Floor, Room 0302
4040 Linz, Austria

Phone: +43-732-2468-6631 (secretary: -6630)
Web: www.jku.at/cg
Email: [email protected]

Sponsors

  • Austrian Science Fund (FWF)
  • State of Upper Austria, Nationalstiftung für Forschung, Technologie und Entwicklung
  • Linz Institute of Technology (LIT)

News (see also Press)

  • 11/15/2021: New work on Through-Foliage Tracking with AOS. See publications (Through-Foliage Tracking with Airborne Optical Sectioning)
  • 06/23/2021: Science Robotics paper appeared. See publications (Autonomous Drones for Search and Rescue in Forests)
  • 5/31/2021: New combined people classifer outbeats classical people classifers significantly. See publications (Combined People Classification with Airborne Optical Sectioning)
  • 04/15/2021: First AOS experiments with DJI M300RTK reveals remarkable results (much better than with our OktoXL 6S12, due to higher GPS precission and better IR camera/stabilizer).

Publications

Modules

  • LFR (C++ and Python code): computes integral images.
  • DET (Python code): contains the person classification.
  • CAM (Python code): the module for triggering, recording, and processing thermal images.
  • PLAN (Python code): implementation of our path planning and adaptive sampling technique.
  • DRONE (C and Python code): contains the implementation for drone communication and the logic to perform AOS flights.
  • SERV (Rust code): contains the implementation of a dabase server to which AOS flights data are uploaded.

Note that the modules LFR, DET, CAM, PLAN, SERV are standalone software packages that can be installed and used independently. The DRONE module, however, relies on the other modules (LFR, DET, CAM, PLAN, SERV) in this repository.

Installation

To install the individual modules, refer to the module's README. For the Python modules (DET, CAM, PLAN) it is sufficient to verify that the required Python libraries are available. Furthermore, the classifier (DET) relies on the OpenVINO toolkit. The modules containing C/C++ code (LFR, DRONE) need to be compiled before they can be used. Similarily the module containing Rust code (SERV) need to be compiled before it can be used. All other modules (LFR, DET, CAM, PLAN, SERV) have to be installed before the DRONE module can be used.

Hardware

For our prototype, an octocopter (MikroKopter OktoXL 6S12, two LiPo 4500 mAh batteries, 4.5 kg to 4.9 kg) carries our payload. In the course of the project 4 versions of payloads with varying components have been used.

Prototype Payload
prototype_2021 payload

Payload Version 1

Initially, the drone was equipped with a thermal camera (FlirVue Pro; 9 mm fixed focal length lens; 7.5 μm to 13.5 μm spectral band; 14 bit non-radiometric) and an RGB camera (Sony Alpha 6000; 16 mm to 50 mm lens at infinite focus). The cameras were fixed to a rotatable gimbal, were triggered synchronously (synched by a MikroKopter CamCtrl controlboard), and pointed downwards during all flights. The flight was planned using MikroKopter's flight planning software and uploaded to the drone as waypoints. The waypoint protocol triggered the cameras every 1m along the flight path, and the recorded images were stored on the cameras’ internal memory cards. Processing was done offline after landing the drone.

Payload Version 2

For the second iteration, the RGB camera was removed. Instead we mounted a single-board system-on-chip computer (SoCC) (RaspberryPi 4B; 5.6 cm × 8.6 cm; 65 g; 8 GB ram), an LTE communication hat (Sixfab 3G/4G & LTE base hat and a SIM card; 5.7 cm × 6.5 cm; 35 g), and a Vision Processing Unit (VPU) (Intel Neural Compute Stick 2; 7.2 cm × 2.7 cm × 1.4 cm; 30 g). The equipments weighted 320 g and was mounted on the rotatable gimbal. In comparison to Version 1, this setup allows full processing on the drone (including path planning and triggering the camera).

Payload Version 3

The third version additionally mounts a Flir power module providing HDMI video output from the camera (640x480, 30 Hz; 15 g), and a video capture card (totaling 350g). In comparison to Version 2, this setup allows faster thermal recordings and thus faster flying speeds. This repository is using Version 3 of our Payload right now.

Payload Version 4

The fourth version does not include any payloads from the previous versions. Instead the payload consists of a custom built light-weight camera array based on a truss design. It carries ten light weight DVR pin-hole cameras (12g each), attached equidistant (1m) to each other on a 9m long detachable and hollow carbon fibre tube (700g) which is segmented into detachable sections (one of the sections is shown in the image) of varying lengths and a gradual reduction in diameter in each section from 2.5cm at the drone centre to 1.5cm at the outermost section.The cameras are aligned in such a way that their optical axes are parallel and pointing downwards. They record images at a resolution of 1600X1200 pixels and videos at a resolution of 1280X720 and 30fps to individual SD cards. All cameras receive power from two central 7.2V Ni-MH batteries and are synchronously triggered from the drone's flight controller trough a flat-band cable bus.

Data

We provide exemplary datasets in the data/open_field, and LFR/data/F0 folders. The digital elevation models in the DEMsubfolders, are provided by the Upper Austrian government, and are converted to meshes and hillshaded images with GDAL. The images and poses are in the corresponding folders. The F0 was recorded while flying over forest with the payload version 1 and is available online. The open field dataset is a linear flight without high vegetation and was recorded with payload version 3 in the course of the experimnents for the "Combined People Classification with Airborne Optical Sectioning" article.

Simulation

A simulator for forest occlusion has been developed by Fracis Seits. The code is available here.

License

  • Data: Creative Commons Attribution 4.0 International
  • Code Modules: You are free to modify and use our software non-commercially; Commercial usage is restricted (see the LICENSE.txt)
  • Occlusion Simulator: MIT
Owner
JKU Linz, Institute of Computer Graphics
JKU Linz, Institute of Computer Graphics
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022