deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications

Overview

Automatic Weapon Detection

Deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications.

Stars Badge Forks Badge Pull Requests Badge Issues Badge GitHub contributors License   Badge


Loved the project? Please visit our Website


Literature Survey

Security is always a main concern in every domain, due to a rise in crime rate in a crowded event or suspicious lonely areas. Weapon detection and monitoring have major applications of computer vision to tackle various problems. Due to growing demand in the protection of safety, security and personal properties, needs and deployment of video surveillance systems can recognize and interpret the scene and anomaly events play a vital role in intelligence monitoring. We implemented weapon detection using a convolution neural network (CNN). Results are tabulated, both algorithms achieve good accuracy, but their application in real situations can be based on the trade-off between speed and accuracy. We surveyed various research evidences and proposed a detection framework which involves three phases detection of objects, recognition of detected objects and alarm system. Single learning based detection framework is used because of which high processing speed is achieved. Because dense features need only to be evaluated once rather than individually for each detector. For object detection a framework using a linear support vector machine classifier with histogram of oriented gradients features. Using a combination of ACF(Aggregated Channel Features) features and sp- LBP(Local binary pattern)features can provide a better trade-off between detection performance and system runtime. some techniques are used to post-process raw detection results. Uses shrinkage version of AdaBoost as the strong classifier and use decision trees as weak learners.To train the classifier, the procedure known as bootstrapping is applied . Shifu Zhou(researcher) et al suggested a method for detecting and locating anomalous activities in video sequences of crowded scenes. The key for method is the coupling of anomdescribon with a spatial-temporal Convolutional Neural Networks. This architecture allows us to capture features from both spatial and temporal dimensions by performing spatial-temporal convolutions, thereby, both the appearance and motion information encoded in continuous frames are extracted Two criterions are used for evaluating anomaly detection accuracy namely a frame level criterion and a pixel level criterion. Motion pattern and FRP (False positive rates) are calculated for evaluating performance. And DR(Detection Rate) corresponds to the successful detection rate of the anomalies happening at EER(Equal Error Rate). We also surveyed from various research evidences that One of the main challenges is to detect anomalies both in time and space domains. This implies to find out which frames that anomalies occur and to localize regions that generate the anomalies within these frames. This model extracts features from both the spatial and the temporal dimensions by performing. 3D convolutions, is achieved by convolving a 3D kernel to the cube formed by stacking multiple contiguous frames together. The issues are that , accurate recognition of actions is a highly challenging task due to cluttered backgrounds, occlusions, and viewpoint variations perform 3D convolution in the convolutional layers of CNNs so that discriminative features along both the spatial and the temporal dimensions are captured.3D convolution is achieved by stacking multiple contiguous frames together. The developed 3D CNN model was trained using a supervised algorithm , and it requires a large number of labelled samples. we propose a novel end-to-end model which integrates the one-class Support Vector Machine (SVM) into Convolutional Neural Network (CNN). Specifically, the robust loss function derived from the one-class SVM is proposed to optimize the parameters of this model. We proposed a learning model for weapon detection from video sequences by combining CNN and SVM. CNN is utilized to learn the underlying high-dimensional normal representations to effectively capture normal features. SVM layer not only distinguishes normal/abnormal cases as a discriminator, but also optimizes parameters of the whole model as an optimization objective. From our exhaustive study of work done and research about Weapon detection model , we proposed a Model which detects the Weapon from video or Picture and activates the alarm.

Features to Detect Weapons / Intruders

Weapons:

We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

Size:

Estimation of the size of software is an essential part of Software Project Management. It helps the project manager to further predict the effort and time which will be needed to build the project. Various measures are used in project size estimation. Some of these are: • Lines of Code • Number of entities in ER diagram • Total number of processes in detailed data flow diagram • Function points

Find the number of functions belonging to the following types: • External Inputs: Functions related to data entering the system. • External outputs: Functions related to data exiting the system. • External Inquiries: They leads to data retrieval from system but don’t change the system. • Internal Files: Logical files maintained within the system. Log files are not included here. • External interface Files: These are logical files for other applications which are used by our system.

Trigger:

Detecting small objects is a difficult task as these objects are rather smaller than the human. In this section, we will implement a gun detector that trained by using the discriminatively trained part-based models. As our object of interest is gun, we will collect different positive samples from different type of gun related videos. To minimize the amount of supervision, we provide the bounding box of the gun in the first frame where the gun appears and apply the tracking method to let it track for the gun. We will then use the result from the tracker to annotate the gun location in each image. For the negative samples, we will use all the annotation from the Pascal Visual Object Classes Challenge (VOC) as all the annotations are without any gun object. Lastly, all the annotation results of the positive sample and negative samples are used as the input for the DPM to train a gun model. Tracking is required in different stages of our system because the object detector tends to produce sparse detection as the object of interest is too small.

Handle

Cohen’s kappa coefficient is used to check the agreement between experts which is calculated using following formula:

aaaaa

where pa ¼ proportion of observations for agreement of two experts; pc ¼ proportion of observations for agreement which is expected to happen by chance between two experts. Agreement matrix of proportions is for weapon purchase. Cohen’ Kappa coefficient value was found to be 0.9425 at a ¼ 0.05 (a is probability of confidence interval for kappa statistics) which signifies an almost perfect agreement between the experts. R Programming Package “psych” is used to compute Cohen’s kappa coefficient. Considering significance and magnitude of kappa coefficient so computed, the annotations labelling represents the justification of process of manually labelling approach which can therefore be used in our analysis to train and test our proposed automated illegal weapon procurement model.

Project Summary:

In this project CNN algorithm is simulated for pre-labelled image dataset for weapon (gun, knife) detection. The algorithm is efficient and gives good results but its application in real time is based on a trade-off between speed and accuracy. With respect to accuracy, CNN gives accuracy of approx. 85%. In our CNN model we have taken 16 layers. Apart from this the optimiser used by us is SGD, with categorical cross entropy loss and accuracy is used as the metrics. For every layer we have used the ‘relu’ activation function, for the last layer we have used softmax. We have used Tensorflow, Keras, PIL, OpenCV, Playsound modules to implement the project. Our software takes a 240 x 240 image as input, in a batch size of 32.

Further, it can be implemented for larger datasets by training using GPUs and high-end DSP and FPGA kits.

Owner
Janhavi
Janhavi
Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Siva Prakash 11 Jan 02, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
The first open-source library that detects the font of a text in a image.

Typefont Typefont is an experimental library that detects the font of a text in a image. Usage Import the main function and invoke it like in the foll

Vasile Pește 1.6k Feb 24, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.

doc2text doc2text extracts higher quality text by fixing common scan errors Developing text corpora can be a massive pain in the butt. Much of the tex

Joe Sutherland 1.3k Jan 04, 2023
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
A machine learning software for extracting information from scholarly documents

GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means

Patrice Lopez 1.9k Jan 08, 2023
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports

A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports "with"-syntax.

Patrice Matz 0 Oct 30, 2021
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022