Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Overview

This repository has been ⛔️ DEPRECATED. Please take a look at our fairly recent work:

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification [paper] [Code]

Deep Learning for Land-cover Classification in Hyperspectral Images

Hyperspectral images are images captured in multiple bands of the electromagnetic spectrum. This project is focussed at the development of Deep Learned Artificial Neural Networks for robust landcover classification in hyperspectral images. Land-cover classification is the task of assigning to every pixel, a class label that represents the type of land-cover present in the location of the pixel. It is an image segmentation/scene labeling task. The following diagram describes the task.



This website describes our explorations with the performance of Multi-Layer Perceptrons and Convolutional Neural Networks at the task of Land-cover Classification in Hyperspectral Images. Currently we perform pixel-wise classification.


Dataset =======

We have performed our experiments on the Indian Pines Dataset. The following are the particulars of the dataset:

  • Source: AVIRIS sensor
  • Region: Indian Pines test site over north-western Indiana
  • Time of the year: June
  • Wavelength range: 0.4 – 2.5 micron
  • Number of spectral bands: 220
  • Size of image: 145x145 pixel
  • Number of land-cover classes: 16

Input data format =================

Each pixel is described by an NxN patch centered at the pixel. N denotes the size of spatial context used for making the inference about a given pixel.

The input data was divided into training set (75%) and a test set (25%).

Hardware used

The neural networks were trained on a machine with dual Intel Xeon E5-2630 v2 CPUs, 32 GB RAM and NVIDIA Tesla K-20C GPU.


Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is an artificial neural network with one or more hidden layers of neurons. MLP is capable of modelling highly non-linear functions between the input and output and forms the basis of Deep-learning Neural Network (DNN) models.

Architecture of Multi-Layer Perceptron used

input- [affine - relu] x 3 - affine - softmax

(Schematic representation below)

Ndenotes the size of the input patch.


Specifics of the learning algorithm

The following are the details of the learning algorithm used:

  • Parameter update algorithm used: Adagrad

    • Batch size: 200
    • Learning rate: 0.01
  • Number of steps: until best validation performance


Performance

Decoding generated for different input patch sizes:


Convolutional Neural Network

(CNN or ConvNet) are a special category of artificial neural networks designed for processing data with a gridlike structure. The ConvNet architecture is based on sparse interactions and parameter sharing and is highly effective for efficient learning of spatial invariances in images. There are four kinds of layers in a typical ConvNet architecture: convolutional (conv), pooling (pool), fullyconnected (affine) and rectifying linear unit (ReLU). Each convolutional layer transforms one set of feature maps into another set of feature maps by convolution with a set of filters.

Architecture of Convolutional Neural Network used

input- [conv - relu - maxpool] x 2 - [affine - relu] x 2 - affine - softmax

(Schematic representation below)

Ndenotes the size of the input patch.


Specifics of the learning algorithm

The following are the details of the learning algorithm used:

  • Parameter update algorithm used: Adagrad

    • Batch size: 100
    • Learning rate: 0.01
  • Number of steps: until best validation performance


Performance

Decoding generated for different input patch sizes:



Description of the repository

  • IndianPines_DataSet_Preparation_Without_Augmentation.ipynb - does the following operations:

    • Loads the Indian Pines dataset
    • Scales the input between [0,1]
    • Mean normalizes the channels
    • Makes training and test splits
    • Extracts patches of given size
    • Oversamples the training set for balancing the classes
  • Spatial_dataset.py - provides a highly flexible Dataset class for handling the Indian Pines data.

  • patch_size.py - specify the required patch-size here.

  • IndianPinesCNN.ipynb- builds the TensorFlow Convolutional Neural Network and defines the training and evaluation ops:

    • inference() - builds the model as far as is required for running the network forward to make predictions.
    • loss() - adds to the inference model the layers required to generate loss.
    • training() - adds to the loss model the Ops required to generate and apply gradients.
    • evaluation() - calcuates the classification accuracy
  • CNN_feed.ipynb - trains and evaluates the Neural Network using a feed dictionary

  • Decoder_Spatial_CNN.ipynb - generates the landcover classification of an input hyperspectral image for a given trained network

  • IndianPinesMLP.py - builds the TensorFlow Multi-layer Perceptron and defines the training and evaluation ops:

    • inference() - builds the model as far as is required for running the network forward to make predictions.
    • loss() - adds to the inference model the layers required to generate loss.
    • training() - adds to the loss model the Ops required to generate and apply gradients.
    • evaluation() - calcuates the classification accuracy
  • MLP_feed.ipynb - trains and evaluates the MLP using a feed dictionary

  • Decoder_Spatial_MLP.ipynb - generates the landcover classification of an input hyperspectral image for a given trained network

  • credibility.ipynb - summarizes the predictions of an ensemble and produces the land-cover classification and class-wise confusion matrix.


Setting up the experiment

  • Download the Indian Pines data-set from here.
  • Make a directory named Data within the current working directory and copy the downloaded .mat files Indian_pines.mat and Indian_pines_gt.mat in this directory.

In order to make sure all codes run smoothly, you should have the following directory subtree structure under your current working directory:

|-- IndianPines_DataSet_Preparation_Without_Augmentation.ipynb
|-- Decoder_Spatial_CNN.ipynb
|-- Decoder_Spatial_MLP.ipynb
|-- IndianPinesCNN.ipynb
|-- CNN_feed.ipynb
|-- MLP_feed.ipynb
|-- credibility.ipynb
|-- IndianPinesCNN.py
|-- IndianPinesMLP.py
|-- Spatial_dataset.py
|-- patch_size.py
|-- Data
|   |-- Indian_pines_gt.mat
|   |-- Indian_pines.mat


  • Set the required patch-size value (eg. 11, 21, etc) in patch_size.py and run the following notebooks in order:
    1. IndianPines_DataSet_Preparation_Without_Augmentation.ipynb
    2. CNN_feed.ipynb OR MLP_feed.ipynb (specify the number of fragments in the training and test data in the variables TRAIN_FILES and TEST_FILES)
    3. Decoder_Spatial_CNN.ipynb OR Decoder_Spatial_MLP.ipynb (set the required checkpoint to be used for decoding in the model_name variable)

Outputs will be displayed in the notebooks.


Acknowledgement

This repository was developed by Anirban Santara, Ankit Singh, Pranoot Hatwar and Kaustubh Mani under the supervision of Prof. Pabitra Mitra during June-July, 2016 at the Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India. The project is funded by Satellite Applications Centre, Indian Space Research Organization (SAC-ISRO).

Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022