[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

Related tags

Deep LearningArbSR
Overview

ArbSR

Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021

[Project] [arXiv]

Highlights

  • A plug-in module to extend a baseline SR network (e.g., EDSR and RCAN) to a scale-arbitrary SR network with small additional computational and memory cost.
  • Promising results for scale-arbitrary SR (both non-integer and asymmetric scale factors) while maintaining the state-of-the-art performance for SR with integer scale factors.

Demo

gif

Motivation

Although recent CNN-based single image SR networks (e.g., EDSR, RDN and RCAN) have achieved promising performance, they are developed for image SR with a single specific integer scale (e.g., x2, x3, x4). In real-world applications, non-integer SR (e.g., from 100x100 to 220x220) and asymmetric SR (e.g., from 100x100 to 220x420) are also necessary such that customers can zoom in an image arbitrarily for better view of details.

Overview

overview

Requirements

  • Python 3.6
  • PyTorch == 1.1.0
  • numpy
  • skimage
  • imageio
  • cv2

Train

1. Prepare training data

1.1 Download DIV2K training data (800 training images) from DIV2K dataset or SNU_CVLab.

1.2 Cd to ./utils and run gen_training_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── DIV2K
	├── HR
		├── 0001.png
		├── ...
		└── 0800.png
	└── LR_bicubic
		├── X1.10
			├── 0001.png
			├── ...
			└── 0800.png
		├── ...
		└── X4.00_X3.50
			├── 0001.png
			├── ...
			└── 0800.png

2. Begin to train

Run ./main.sh to train on the DIV2K dataset. Please update dir_data in the bash file as your_data_path.

Test

1. Prepare test data

1.1 Download benchmark datasets (e.g., Set5, Set14 and other test sets).

1.2 Cd to ./utils and run gen_test_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── benchmark
	├── Set5
		├── HR
			├── baby.png
			├── ...
			└── woman.png
		└── LR_bicubic
			├── X1.10
				├── baby.png
				├── ...
				└── woman.png
			├── ...
			└── X4.00_X3.50
				├── baby.png
				├── ...
				└── woman.png
	├── Set14
	├── B100
	├── Urban100
	└── Manga109
		├── HR
			├── AisazuNihalrarenai.png
			├── ...
			└── YouchienBoueigumi.png
		└── LR_bicubic
			├── X1.10
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png
			├── ...
			└── X4.00_X3.50
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png

2. Begin to test

Run ./test.sh to test on benchmark datasets. Please update dir_data in the bash file as your_data_path.

Quick Test on An LR Image

Run ./quick_test.sh to enlarge an LR image to an arbitrary size. Please update dir_img in the bash file as your_img_path.

Visual Results

1. SR with Symmetric Scale Factors

non-integer

2. SR with Asymmetric Scale Factors

asymmetric

3. SR with Continuous Scale Factors

Please try our interactive viewer.

Citation

@InProceedings{Wang2020Learning,
  title={Learning A Single Network for Scale-Arbitrary Super-Resolution},
  author={Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, and Yulan Guo},
  booktitle={ICCV},
  year={2021}
}

Acknowledgements

This code is built on EDSR (PyTorch) and Meta-SR. We thank the authors for sharing the codes.

Owner
Longguang Wang
Longguang Wang
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022