Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
solsim is the Solana complex systems simulator. It simulates behavior of dynamical systems—DeFi protocols, DAO governance, cryptocurrencies, and more—built on the Solana blockchain

solsim is the Solana complex systems simulator. It simulates behavior of dynamical systems—DeFi protocols, DAO governance, cryptocurrencies, and more—built on the Solana blockchain

William Wolf 12 Jul 13, 2022
You will need to install a few python packages for this one.

Features Bait support Auto repair will repair every 10 catches Anti detection (still a work in progress) but using random times and click positions Pr

12 Sep 21, 2022
Meera 2 May 12, 2022
Materials and information for my PyCascades 2021 Presentation

Materials and information for PyCascades 2021 Presentation: Sparking Creativity in LED Art with CircuitPython

GeekMomProjects 19 May 04, 2022
This is a Python program I wrote to simulate the solar system with 79 lines of code.

Solar System With Python This is a Python program I wrote to simulate the solar system with 79 lines of code. Required modules tkinter, math, time Why

Mehmet Aydoğmuş 1 Oct 26, 2021
Shared utility scripts for AI for Earth projects and team members

Overview Shared utilities developed by the Microsoft AI for Earth team The general convention in this repo is that users who want to consume these uti

Microsoft 38 Dec 30, 2022
Python binding to rust zw-fast-quantile

zw_fast_quantile_py zw-fast-quantile python binding Installation pip install zw_fast_quantile_py Usage import zw_fast_quantile_py

Paul Meng 1 Dec 30, 2021
A stupid obfuscation thing

StupidObfuscation A stupid obfuscation thing How it works The obfuscator takes a string, splits into pieces of one, then, using the table from letter.

Echo 2 May 03, 2022
Integration of CCURE access control system with automation HVAC of a commercial building

API-CCURE-Automation-Quantity-Floor Integration of CCURE access control system with automation HVAC of a commercial building CCURE is an access contro

Alexandre Edson Silva Pereira 1 Nov 24, 2021
Zeus is an open source flight intellingence tool which supports more than 13,000+ airlines and 250+ countries.

Zeus Zeus is an open source flight intellingence tool which supports more than 13,000+ airlines and 250+ countries. Any flight worldwide, at your fing

DeVickey 1 Oct 22, 2021
Performance monitoring and testing of OpenStack

Browbeat Browbeat is a performance tuning and analysis tool for OpenStack. Browbeat is free, Open Source software. Analyze and tune your Cloud for opt

cloud-bulldozer 83 Dec 14, 2022
RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information.

RDFLib RDFLib is a pure Python package for working with RDF. RDFLib contains most things you need to work with RDF, including: parsers and serializers

RDFLib 1.8k Jan 02, 2023
This is a simple leaderboard for 30 days of Google Cloud program for students of ASIET

30daysleaderboard #Hacktoberfest - Please don't make changes in readme file. Only improvement in the project will be accepted. Update - Now if you run

5 Oct 29, 2021
Materials for the Introduction in Python , Linux , Git and Github

This repository contains all the materials of the presentation on the introduction of python, linux, git and Github.

AMMI 3 Aug 28, 2022
ThnoolBox - A thneed is a multi-use versatile object

ThnoolBox Have you ever wanted a collection of bodged desktop apps that are Lorax themed ? No ? Sucks to suck I guess Apps & their downsides CalculaTh

pocoyo 1 Jan 21, 2022
One line Brainfuck interpreter in Python

One line Brainfuck interpreter in Python

16 Dec 21, 2022
Programming in Bioinformatics, Block 3

Programming in Bioinformatics - Block 3 I. Setting up Environment and Running the Code Create the environment using the pibi_block3.yml file with the

2 Dec 10, 2021
tgEasy | Easy for a Brighter Shine | Monkey Patcher Addon for Pyrogram

tgEasy | Easy for a Brighter Shine | Monkey Patcher Addon for Pyrogram

Jayant Hegde Kageri 35 Nov 12, 2022
Scraping comments from the political section of popular Nigerian blog (Nairaland), and saving in a CSV file.

Scraping_Nairaland This project scraped comments from the political section of popular Nigerian blog www.nairaland.com using the Python BeautifulSoup

Ansel Orhero 1 Nov 14, 2021
A small site to list shared directories

Nebula Server Directories This site can be used to list folder and subdirectories in your server : Python It's required to have Python 3.8 or more ins

Adrien J. 1 Dec 28, 2021