Certifiable Outlier-Robust Geometric Perception

Overview

Certifiable Outlier-Robust Geometric Perception

About

This repository holds the implementation for certifiably solving outlier-robust geometric perception problems to global optimality. The certifiable outlier-robust geometric perception framework contains two main modules:

  • A sparse semidefinite programming relaxation (SSR) scheme that relaxes nonconvex outlier-robust perception problems into convex semidefinite programs (SDPs); and

  • A novel SDP solver, called STRIDE, that solves the generated SDPs at an unprecedented scale and accuracy.

We proposed a preliminary version of the SSR scheme in our NeurIPS 2020 paper, and released a certifier (that certifies if a given estimate is optimal) based on Douglas-Rachford Splitting (DRS). Please switch to the NeurIPS2020 branch of this repo to checkout the NeurIPS2020 implementation.

If you find this library helpful or use it in your projects, please cite:

@article{Yang21arXiv-certifiableperception,
  title={Certifiable Outlier-Robust Geometric Perception: Exact Semidefinite Relaxations and Scalable Global Optimization},
  author={Yang, Heng and Carlone, Luca},
  journal={arXiv preprint arXiv:2109.03349},
  year={2021}
}

Documentation

Coming soon.

Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023