Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

Overview

SPLASH: Semantic Parsing with Language Assistance from Humans

SPLASH is dataset for the task of semantic parse correction with natural language feedback in the context of text-to-SQL parsing.

Example

The task, dataset along with baseline results are presented in
Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback.
Ahmed Elgohary, Saghar Hosseini and Ahmed Hassan Awadallah.
ACL 2020.

Release

The train.json, dev.json and test.json contain the training, development and testing examples of SPLASH. In addition to that, we also release the 179 examples that are based on the EditSQL parser (Please, see section 6.3 in the paper for more details). The EditSQL examples are in editsql.json. SPLASH is distributed under the CC BY-SA 4.0 license.

Format

Each example contains the following fields:

db_id: Name of Spider database.

question: Question (Utterance) as provided in Spider.

predicted_parse: The predicted SQL parse by the relevant model.

predicted_parse_with_values: The predicted SQL with the values (annonomized in predicted_parse) inferred by a rule-based post-processor. Note that we still use Spider's evaluation measure which ignores the values, but inferring values for the predicted parse is essential for generating meaningful explanations.

predicted_parse_explanation: The generated natural language explanation of the predicted SQL.

feedback: Collected natural language feedback.

gold_parse: The gold parse of the given question as provided in Spider.

beam: The top 20 predictions with corresponding scores produced by Seq2Struct beam search.

Please, refer to the paper for more details.

Example

    {
        "db_id": "csu_1", 
        "question": "Which university is in Los Angeles county and opened after 1950?", 
        "predicted_parse": "SELECT T1.Campus FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.County = value AND T1.Year > value AND T2.Year > value", 
        "predicted_parse_with_values": "SELECT T1.Campus FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.County = \"Los Angeles\" AND T1.Year > 1950 AND T2.Year > 2002",
        "predicted_parse_explanation": [
            "Step 1: For each row in Campuses table, find the corresponding rows in faculty     
            table", 
            "Step 2: find Campuses's Campus of the results of step 1 whose County equals Los 
             Angeles and Campuses's Year greater than 1950 and faculty's Year greater than 2002"
        ],
        "feedback": "In step 2 Remove faculty 's year greater than 2002\".", 
        "gold_parse": "SELECT campus FROM campuses WHERE county  =  \"Los Angeles\" AND YEAR  >  
        1950", 
        "beam": [
            [
                "SELECT T1.Campus FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.County = value AND T2.Year > value AND T2.Year > value", 
                -1.5820374488830566
            ], 
            [
                "SELECT T1.County FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.Campus = value AND T2.Year > value AND T2.Year > value", 
                -2.0078020095825195
            ], 
            ..
  }          

Please, contact Ahmed Elgohary < [email protected] > for any questions/feedback.

Citation

@inproceedings{Elgohary20Speak,
Title = {Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback},
Author = {Ahmed Elgohary and Saghar Hosseini and Ahmed Hassan Awadallah},
Year = {2020},
Booktitle = {Association for Computational Linguistics},
}
Owner
Microsoft Research - Language and Information Technologies (MSR LIT)
Microsoft Research - Language and Information Technologies (MSR LIT)
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022