Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

Overview

IrwGAN (ICCV2021)

Unaligned Image-to-Image Translation by Learning to Reweight

[Update] 12/15/2021 All dataset are released, trained models and generated images of IrwGAN are released

[Update] 11/16/2021 Code is pushed, selfie2anime-danbooru dataset released.

Dataset

selfie2anime-danbooru | selfie-horse2zebra-dog | horse-cat2dog-anime | beetle-tiger2lion-sealion

Trained Models and Generated Images

  • selfie2anime-danbooru   IrwGAN | [Baseline] | [CycleGAN] | [MUNIT] | [GcGAN] | [NICE-GAN]
  • selfie-horse2zebra-dog   IrwGAN | [Baseline] | [CycleGAN] | [MUNIT] | [GcGAN] | [NICE-GAN]
  • horse-cat2dog-anime     IrwGAN | [Baseline] | [CycleGAN] | [MUNIT] | [GcGAN] | [NICE-GAN]
  • beetle-tiger2lion-sealion IrwGAN | [Baseline] | [CycleGAN] | [MUNIT] | [GcGAN] | [NICE-GAN]

Basic Usage

  • Training:
python main.py --dataroot=datasets/selfie2anime-danbooru 
  • Resume:
python main.py --dataroot=datasets/selfie2anime-danbooru --phase=resume
  • Test:
python main.py --dataroot=datasets/selfie2anime-danbooru --phase=test
  • Beta Mode --beta_mode=A if domain A is unaligned, --beta_mode=B if domain B is unaligned, --beta_mode=AB if two domains are unaligned
  • Effective Sample Size lambda_nos_A and lambda_nos_B are used to control how many samples are selected. The higher the weight, more samples are selected. We use 1.0 across all experiments.

Example Results

Citation

If you use this code for your research, please cite our paper:

@inproceedings{xie2021unaligned,
  title={Unaligned Image-to-Image Translation by Learning to Reweight},
  author={Xie, Shaoan and Gong, Mingming and Xu, Yanwu and Zhang, Kun},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={14174--14184},
  year={2021}
}
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022