Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Related tags

Deep Learninglsr
Overview

LSR: Learned Spatial Representations for Few-shot Talking-Head Synthesis

Official code release for LSR. For technical details, please refer to:

Learned Spatial Representations for Few-shot Talking Head Synthesis.
Moustafa Meshry, Saksham Suri, Larry S. Davis, Abhinav Shrivastava
In International Conference on Computer Vision (ICCV), 2021.

Paper | Project page | Video

If you find this code useful, please consider citing:

@inproceedings{meshry2021step,
  title = {Learned Spatial Representations for Few-shot Talking-Head Synthesis},
  author = {Meshry, Moustafa and
          Suri, Saksham and
          Davis, Larry S. and
          Shrivastava, Abhinav},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
  year = {2021}
}

Environment setup

The code was built using tensorflow 2.2.0, cuda 10.1.243, and cudnn v7.6.5, but should be compatible with more recent tensorflow releases and cuda versions. To set up a virtual environement for the code, follow the following instructions.

  • Create a new conda environment
conda create -n lsr python=3.6
  • Activate the lsr environment
conda activate lsr
  • Set up the prerequisites
pip install -r requirements.txt

Run a pre-trained model

  • Download our pretrained model and extract to ./_trained_models/meta_learning
  • To run the inference for a test identity, execute the following command:
python main.py \
    --train_dir=_trained_models/meta_learning \
    --run_mode=infer \
    --K=1 \
    --source_subject_dir=_datasets/sample_fsth_eval_subset_processed/train/id00017/OLguY5ofUrY/combined \
    --driver_subject_dir=_datasets/sample_fsth_eval_subset_processed/test/id00017/OLguY5ofUrY/combined \
    --few_shot_finetuning=false 

where --K specifies the number of few-shot inputs, --few_shot_finetuning specifies whether or not to fine-tune the meta-learned model using the the K-shot inputs, and --source_subject_dir and --driver_subject_dir specify the source identity and driver sequence data respectively. Each output image contains a tuple of 5 images represeting the following (concatenated along the width):

  • The input facial landmarks for the target view.
  • The output discrete layout of our model, visualized in RGB.
  • The oracle segmentation map using an off-the-shelf segmentation model (i.e. the pesuedo ground truth), visualized in RGB.
  • The final output of our model.
  • The ground truth image of the driver subject.

A sample tuple is shown below.

        Input landmarks             Output spatial map           Oracle segmentation                     Output                           Ground truth


Test data and pre-computed outupts

Our model is trained on the train split of the VoxCeleb2 dataset. The data used for evaluation is adopted from the "Few-Shot Adversarial Learning of Realistic Neural Talking Head Models" paper (Zakharov et. al, 2019), and can be downloaded from the link provided by the authors of the aforementioned paper.

The test data contains 1600 images of 50 test identities (not seen by the model during training). Each identity has 32 input frames + 32 hold-out frames. The K-shot inputs to the model are uniformly sampled from the 32 input set. If the subject finetuning is turned on, then the model is finetuned on the K-shot inputs. The 32 hold-out frames are never shown to the finetuned model. For more details about the test data, refer to the aforementioned paper (and our paper). To facilitate comparison to our method, we provide a link with our pre-computed outputs of the test subset for K={1, 4, 8, 32} and for both the subject-agnostic (meta-learned) and subject-finetuned models. For more details, please refer to the README file associated with the released outputs. Alternatively, you can run our pre-trained model on your own data or re-train our model by following the instructions for training, inference and dataset preparation.

Dataset pre-processing

The dataset preprocessing has the following steps:

  1. Facial landmark generation
  2. Face parsing
  3. Converting the VoxCeleb2 dataset to tfrecords (for training).

We provide details for each of these steps.

Facial Landmark Generation

  1. data_dir: Path to a directory containing data to be processed.
  2. output_dir: Path to the output directory where the processed data should be saved.
  3. k: Sampling rate for frames from video (Default is set to 10)
  4. mode: The mode can be set to images or videos depending on whether the input data is video files or already extracted frames.

Here are example commands that process the sample data provided with this repository:

Note: Make sure the folders only contain the videos or images that are to be processed.

  • Generate facial landmarks for sample VoxCeleb2 test videos.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_test_videos \
    --output_dir=_datasets/sample_test_videos_processed \
    --mode=videos

To process the full dev and test subsets of the VoxCeleb2 dataset, run the above command twice while setting the --data_dir to point to the downloaded dev and test splits respectively.

  • Generate facial landmarks for the train portion of the sample evaluation subset.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_fsth_eval_subset/train \
    --output_dir=_datasets/sample_fsth_eval_subset_processed/train \
    --mode=images
  • Generate facial landmarks for the test portion of the sample evaluation subset.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_fsth_eval_subset/test \
    --output_dir=_datasets/sample_fsth_eval_subset_processed/test \
    --mode images

To process the full evaluation subset, download the evaluation subset, and run the above commands on the train and test portions of it.

Facial Parsing

The facial parsing step generates the oracle segmentation maps. It uses face parser of the CelebAMask-HQ github repository

To set it up follow the instructions below, and refer to instructions in the CelebAMask-HQ github repository for guidance.

mkdir third_party
git clone https://github.com/switchablenorms/CelebAMask-HQ.git third_party
cp preprocessing/segmentation/* third_party/face_parsing/.

To process the sample data provided with this repository, run the following commands.

  • Generate oracle segmentations for sample VoxCeleb2 videos.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_test_videos_processed
  • Generate oracle segmentations for the train portion of the sample evaluation subset.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_fsth_eval_subset_processed/train
  • Generate oracle segmentations for the test portion of the sample evaluation subset.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_fsth_eval_subset_processed/test

Converting VoxCeleb2 to tfrecords.

To re-train our model, you'll need to export the VoxCeleb2 dataset to a TF-record format. After downloading the VoxCeleb2 dataset and generating the facial landmarks and segmentations for it, run the following commands to export them to tfrecods.

python data/export_voxceleb_to_tfrecords.py \
  --dataset_parent_dir=
   
     \
  --output_parent_dir=
    
      \
  --subset=dev \
  --num_shards=1000

    
   

For example, the command to convert the sample data provided with this repository is

python data/export_voxceleb_to_tfrecords.py \
  --dataset_parent_dir=_datasets/sample_fsth_eval_subset_processed \
  --output_parent_dir=_datasets/sample_fsth_eval_subset_processed/tfrecords \
  --subset=test \
  --num_shards=1

Training

Training consists of two stages: first, we bootstrap the training of the layout generator by training it to predict a segmentation map for the target view. Second, we turn off the semantic segmentation loss and train our full pipeline. Our code assumes the training data in a tfrecord format (see previous instructions for dataset preparation).

After you have generated the dev and test tfrecords of the VoxCeleb2 dataset, you can run the training as follows:

  • run the layout pre-training step: execute the following command
sh scripts/train_lsr_pretrain.sh
  • train the full pipeline: after the pre-training is complete, run the following command
sh scripts/train_lsr_meta_learning.sh

Please, refer to the training scripts for details about different training configurations and how to set the correct flags for your training data.

Owner
Moustafa Meshry
Moustafa Meshry
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022