Код файнтюнинга оригинального CLIP на русский язык

Overview

О чем репозиторий

В этом репозитории представлен способ файтюнить оригинальный CLIP на новый язык

Model predictions

Почему модель не видит женщину и откуда на картинке с текстом слон?

Основные особенности:

  • Используются оригинальные картиночные и текстовые трансформеры;
  • Поэтому есть возможность использовать оригинальные эмбединги картинок, а тексты обучать или дообучать на требуемый язык.

Что ожидалось?

  • Для обучения трансформера русскому языку будет достаточно 3.7 млн пар картинка-текст;
  • Будет использована вся сила исходных картиночных эмбедингов, обученных на сотнях миллионов пар картинка-текст;
  • Сохранится скорость и качество работы алгоритма.

Что не получилось?

  • Модель выучила русский, но не так хорошо, как ожидалось. Видно, что она многое не понимает. Газель для нее - это машина, а не животное. А метроном и минарет для неё вообще неизвестны;
  • 3.7 млн пар мало для полноценного обучения текстового трансформера для нового языка, не хватает охвата понятий;

Как улучшить?

  • Больше и разнообразнее данных;
  • Заменить текстовый трансформер на уже предобученную языковую модель нужного языка.

Какие репозитории использовались?

Детали

Веса обученной модели можно скачать по ссылке. Код инференса есть в скрипте testing.py

Датасет

Датасет взят с соревнования Yandex Cup 2021, но правилами запрещается использовать его вне соревнования.

Всего там было 5.5 млн картинок, к каждой шло 5 поисковых запросов, после которых люди выбрали эту картинку.

Вместо картинок были ссылки на картинки, мне удалось скачать только 3.7 млн.

Токенайзер для русского языка (и любого другого)

У меня достаточно ограниченный опыт в NLP, поэтому большую часть проблем вызвала именно языковая часть. Я не очень понимала, какой подход может заработать, а какой нет, поэтому остановилась просто на рабочем, если кто-то подскажет, как надо было делать правильно - прошу в личные сообщения :)

В итоге я сделала так:

  • Переписала оригинальный токенайзер так, чтобы он умел в английские буквы и русские;
  • Пришлось убрать обработку utf символов, так как русские слова тогда мапились в набор букв, а не в слово. Никак иначе не удавалось разобраться с этой проблемой;
  • Оставила английские bpe пары, так как в датасете встречались английские слова;
  • Добавила русские bpe пары, нашла файл только у переводчика от фейсбука, но пришлось почистить от дублей.

Трансформер для картинок

Оригинальный ViT-B/32 с замороженными весами.

Обучение

  • Подгружала веса оригинального клипа;
  • Замораживала картиночный трансформер;
  • Текстовый трансформер переопределяла с новым размером словаря;
  • Дальше стандартное обучение clip, где картиночные эмбединги не меняются, а текстовые учатся с нуля;
  • Всего было 30 эпох, на одну эпоху уходило 70-90 минут, всего около 40 часов на A100 80gb c amp.

Ресурсы

Обучение производилось на платформе Yandex Datasphere, по сути - это jupyter lab/notebooks с урезанным bash функционалом, но очень сильными машинками.

Jupyter наложи свой отпечаток, в коде остались ноутбуковские артефакты - например, вынесение аргументов в класс в скрипте, а не передача через командную строку.

К сожалению, у меня не было возможности отладить код на обычном сервере или компьютере, так как ноут слабый, всё падало при загрузке модели.

Но код в том виде, что есть, работает запуском скрипта main.py (если его импортировать в ноутбук, хехе)

Результаты

Метрики по нескольким датасетам можно посмотреть ниже. А сейчас хотелось бы обсудить особенности обученной модели.

correlation

  • В целом, результаты неплохие и все кроме одной картинки имеют наибольшую корреляцию с подходящим текстом, а с остальными маленькую;
  • Но про фото текста модель, увы, не знает ничего, получается, в датасете не было достаточного количества подобных данных;
  • Ракета угадывается на нескольких фото, хотя один раз, вероятно, это не она, что тоже нормально;
  • Самое забавное с фото кота, потому что в надписи присутствует слово фото - и модель, напомню, обученная на поисковых запросах, хорошо знает что такое фото. Для силуэта лошади и текста она выдает низкие корреляции. Силуэт - это рисунок, а про текст она ничего не знает. Если заменить фразу "фото морды полосатого кота" на "морда полосатого кота", то эти корреляции уходят.

Если посмотреть на картинку в начале страницы, то там у модели самые большие проблемы опять с текстом... и с женщиной. Модель видит ракету, почему-то равнину и только потом женщину.

В репозитории и блоге Сбера, откуда я взяла код для этих двух визуализаций, с женщиной всё в порядке. А текст тоже имеет неверные корреляции.

Еще одна картинка с матрицей ошибок по датасету cifar10. Для остальных датасетов визуализации можно найти в папке pics.

cifar10

Самым проблемным оказался кот и совершенно не ясно почему! Остальные недопонимания достаточно понятны, а с котом нет.

Результаты - метрики

Сравнительная табличка результатов работы нескольких алгоритмов, метрика accuracy потому что у Сбера и OpenAI она уже посчитана.

У моей модели и сберовской язык русский (и мы классы могли немного по-разному перевести).

Для OpenAI язык английский, данные из статьи.

Датасет Cifar10 Cifar100 Caltech101 Размер датасета для обучения Время обучения
CLIP Russian (моя модель) 76% 32% 54% 3.7 млн картинок и 5 поисковых запросов к каждой ~40 часов на А100 80gb
Sber ruCLIP* 78% 41% - Предобученная RuGPT3Small и 3 млн пар 5 дней на 16 Tesla GPU V100
OpenAi CLIP** 95% 80% 93% 400 million (image, text) pairs collected from the internet 12 days on 256 V100 GPUs***
  • * Блогпост о ruCLIP от Сбера
  • ** Paper OpenAI
  • *** У оригинального клипа это всё время обучения, в то время как у Сбера и моего клипа - это только дообучение русскому языку

Моя модель +- сравнима с результатами модели Сбера, хоть у меня и не использовалась предобученная модель. Ну и на достижение такого результата затрачено сильно меньше вычислительных ресурсов. На лидерборде соревнования эти можели показывали тоже примерно равный результат.

Названия классов, переведенных на русский, и код инференса можно увидеть в папке testing.

Owner
Valentina Biryukova
Data Scientist, ML/DL Engineer
Valentina Biryukova
Simple module with some functions such as generate password (get_random_string)

Simple module with some functions such as generate password (get_random_string), fix unicode strings, size converter, dynamic console, read/write speed checker, etc.

Dmitry 2 Dec 03, 2022
fast_bss_eval is a fast implementation of the bss_eval metrics for the evaluation of blind source separation.

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Various hdas (Houdini Digital Assets)

aaTools My various assets for Houdini "ms_asset_loader" - Custom importer assets from Quixel Bridge "asset_placer" - Tool for placment sop geometry on

9 Dec 19, 2022
PhD document for navlab

PhD_document_for_navlab The project contains the relative software documents which I developped or used during my PhD period. It includes: FLVIS. A st

ZOU YAJING 9 Feb 21, 2022
A collection of useful functions for writers to analyze text/stories.

AuthorTools AuthorTools provides a multitude of functions for easily analyzing (your?) writing. AuthorTools is made especially for creative writers wi

1 Jan 14, 2022
Home Assistant integration for spanish electrical data providers (e.g., datadis)

homeassistant-edata Esta integración para Home Assistant te permite seguir de un vistazo tus consumos y máximas potencias alcanzadas. Para ello, se ap

VMG 163 Jan 05, 2023
🚀 emojimash 🚀 is a programming language with ALL THE EMOJI

🚀 emojimash 🚀 is a programming language with ALL THE EMOJI

Python Whiz 256 1 Oct 26, 2021
A Trace Explorer for Reverse Engineers

Tenet - A Trace Explorer for Reverse Engineers Overview Tenet is an IDA Pro plugin for exploring execution traces. The goal of this plugin is to provi

1k Jan 02, 2023
An useful scripts for Misskey

misskey-scripts This place storing useful scripts which made by me. icon-repair Repair broken remote user's icon.

CyberRex 5 Sep 09, 2022
Semester Project on Signal Processing @CS UCU 2021

Blur Detection with Haar Wavelet Transform Requirements Python3 opencv-python PyWavelets Install these using the following command: $ pip install -r r

ButynetsD 2 Oct 15, 2022
Type Persian without confusing words for yourself and others, in Adobe Connect

About In the Adobe Connect chat section, to type in Persian or Arabic, the written words will be confused and will be written and sent illegibly (This

Matin Najafi 23 Nov 26, 2021
BDD base project: Python + Behave

BDD base project: Python + Behave Basic example of using Python with Behave (BDD). This Gherkin example includes: Basic Scenario Scenario Outline Tagg

eccanto 1 Dec 08, 2021
Stock Monitoring

Stock Monitoring Description It is a stock monitoring script. This repository is still under developing. Getting Started Prerequisites & Installing pi

Sission 1 Feb 03, 2022
JLC2KICAD_lib is a python script that generate a component library for KiCad from the JLCPCB/easyEDA library.

JLC2KiCad_lib is a python script that generate a component library (schematic, footprint and 3D model) for KiCad from the JLCPCB/easyEDA library. This script requires Python 3.6 or higher.

Nicolas Toussaint 73 Dec 26, 2022
CuraMultiplyByGrid - Cura Плагин для размножения детали сеткой на весь стол автоматически без поворота

CuraMultiplyByGrid Cura Плагин для размножения детали сеткой на весь стол автоматически без поворота. Размножение в куре настолько ужасно реализовано,

3 Dec 02, 2022
Cairo-bloom - A naive bloom filter implementation in Cairo

🥀 cairo-bloom A naive bloom filter implementation in Cairo. A Bloom filter is a

Sam Barnes 37 Oct 01, 2022
Python programming language Test

Exercise You are tasked with creating a data-processing app that pre-processes and enriches the data coming from crawlers, with the following requirem

Monirul Islam Khan 1 Dec 13, 2021
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.

BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via

Khai Ba Nguyen 18 Nov 14, 2022
Monochrome's API, implemented with Deta Base and Deta Drive.

Monochrome Monochrome's API, implemented with Deta Base and Deta Drive. Create a free account on Deta to test this out! Most users will prefer the Mon

Monochrome 5 Sep 22, 2022
Data Applications Project

DBMS project- Hotel Franchise Data and application project By TEAM Kurukunda Bhargavi Pamulapati Pallavi Greeshma Amaraneni What is this project about

Greeshma 1 Nov 28, 2021