Deep learning model, heat map, data prepo

Overview

DEEP LEARNING ON USA DEMOCRATES DEBATE

By Pamela Dekas

import sys
import csv
import re 
import nltk
import string
import unicodedata
from textblob import TextBlob
from collections import Counter
import pandas as pd
import numpy as np
from wordcloud import WordCloud
from nltk.classify import * 
from nltk.corpus import stopwords
from sklearn.metrics import f1_score, roc_auc_score
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
import nltk.classify.util
import matplotlib.pyplot as plt
from string import punctuation 
from nltk.corpus import stopwords
from wordcloud import STOPWORDS
import os
from sklearn.model_selection import train_test_split
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
Using TensorFlow backend.



---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)


   
     in 
    
     ()
     22 import os
     23 from sklearn.model_selection import train_test_split
---> 24 from keras.datasets import imdb
     25 from keras.models import Sequential
     26 from keras.layers import Dense


~\Anaconda3\lib\site-packages\keras\__init__.py in 
     
      ()
      1 from __future__ import absolute_import
      2 
----> 3 from . import utils
      4 from . import activations
      5 from . import applications


~\Anaconda3\lib\site-packages\keras\utils\__init__.py in 
      
       ()
      4 from . import data_utils
      5 from . import io_utils
----> 6 from . import conv_utils
      7 from . import losses_utils
      8 from . import metrics_utils


~\Anaconda3\lib\site-packages\keras\utils\conv_utils.py in 
       
        () 7 from six.moves import range 8 import numpy as np ----> 9 from .. import backend as K 10 11 ~\Anaconda3\lib\site-packages\keras\backend\__init__.py in 
        
         () ----> 1 from .load_backend import epsilon 2 from .load_backend import set_epsilon 3 from .load_backend import floatx 4 from .load_backend import set_floatx 5 from .load_backend import cast_to_floatx ~\Anaconda3\lib\site-packages\keras\backend\load_backend.py in 
         
          () 88 elif _BACKEND == 'tensorflow': 89 sys.stderr.write('Using TensorFlow backend.\n') ---> 90 from .tensorflow_backend import * 91 else: 92 # Try and load external backend. ~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in 
          
           () 52 53 # Private TF Keras utils ---> 54 get_graph = tf_keras_backend.get_graph 55 # learning_phase_scope = tf_keras_backend.learning_phase_scope # TODO 56 name_scope = tf.name_scope AttributeError: module 'tensorflow.python.keras.backend' has no attribute 'get_graph' 
          
         
        
       
      
     
    
   
speech = pd.read_csv('debate_transcripts_v3_2020-02-26.csv',encoding= 'unicode_escape')
df= pd.DataFrame(speech)
dem_speakers = df["speaker"]
number_of_speakers = len(set(dem_speakers))
print("Nombre de speakers:",number_of_speakers, "speakers")

# Mean duration of speech.
print("temps moyen de parole:",np.mean(df["speaking_time_seconds"]), "seconds")
print("Dataset size:", len(df))
Nombre de speakers: 106 speakers
temps moyen de parole: 16.49230769230769 seconds
Dataset size: 5911
df.info()

   
    
RangeIndex: 5911 entries, 0 to 5910
Data columns (total 6 columns):
date                     5911 non-null object
debate_name              5911 non-null object
debate_section           5911 non-null object
speaker                  5911 non-null object
speech                   5911 non-null object
speaking_time_seconds    5395 non-null float64
dtypes: float64(1), object(5)
memory usage: 277.2+ KB

   
df.groupby('speaker')['speaking_time_seconds'].sum(level=0).nlargest(10).plot.bar()
plt.title('Repartition par temps de parole')
plt.show()

png

debate_time = df.groupby(by=['speaker', 'date']).speaking_time_seconds.sum().nlargest(15)
debate_time.plot()

   

   

png

suppresion des colonnes qui ne seront pas utilisé dans la suite du projet et creation du dataset final###

df=df.drop(['date','debate_name','debate_section','speaking_time_seconds'],1)
df.head(5)
speaker speech
0 Norah O�Donnell Good evening and welcome, the Democratic presi...
1 Gayle King And Super Tuesday is just a week away and this...
2 Norah O�Donnell And CBS News is proud to bring you this debate...
3 Gayle King And we are partnering tonight also with Twitte...
4 Norah O�Donnell Now, here are the rules for the next two hours...

PREPROCESSING

import nltk 
nltk.download('punkt')
stopwords = nltk.corpus.stopwords.words('english')
Tailored_stopwords=('im','ive','mr','weve','dont','well','will','make','us','we',
                      'I','make','got','need','want','think',
                      'going','go','one','thank','going',
                      'way','say','every','re','us','first',
                     'now','said','know','look','done','take',
                     'number','two','three','s','m',"t",
                      'let','don','tell','ve','im','mr','put','maybe','whether','many', 'll','around','thing','Secondly','doesn','lot')
#stopwords = nltk.corpus.stopwords.words('english')
stopwords = set(STOPWORDS)
stopwords= stopwords.union(Tailored_stopwords)
[nltk_data] Downloading package punkt to C:\Users\pamel.DESKTOP-O19M7N
[nltk_data]     F\AppData\Roaming\nltk_data...
[nltk_data]   Package punkt is already up-to-date!
def Text_cleansing(speech):
    speech = re.sub('@[A-Za-z0–9]+', '', str(speech))
    speech = re.sub('#', '', speech) # Enlever les '#' hash tag
    speech = re.sub('rt', '', speech)
    speech=re.sub(',',' ', speech)
    speech=re.sub('!',' ',speech)
    speech=re.sub(':',' ',speech)
    speech=re.sub("'","",speech)
    speech=re.sub('"','',speech)
    speech=speech.lower()
    speech = word_tokenize(speech)
    return speech
def remove_stopwords(speech):
    speech_clean = [word for word in speech if word not in stopwords]
    return speech_clean
                         
df['speech_tokens']= df['speech'].apply(Text_cleansing)
df.head(5)
speaker speech speech_tokens
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t...
df['speech_clean']=df['speech_tokens'].apply(remove_stopwords)
df.head(5)
speaker speech speech_tokens speech_clean
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,... [good, evening, welcome, democratic, president...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,... [super, tuesday, week, away, biggest, primary,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th... [cbs, news, proud, bring, debate, along, co-sp...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ... [panering, tonight, twitter, ., home, paicipat...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t... [rules, next, hours, ., asked, question, minut...
def wordcloud(dataframe):
    Aw= df['speech_clean']
    wordCloud = WordCloud(width=500, height=300,background_color='white', max_font_size=110).generate(str(Aw))
    plt.imshow(wordCloud, interpolation="bilinear")
    plt.axis("off")
    plt.title("speech wordcloud")

wordcloud(df['speech_clean'])

png

Pour la suite du projet on reduira la liste des speakers aux candidats les plus notoires (top 7 speakers)###

df = df.loc[df.speaker.isin({'Joe Biden', 'Bernie Sanders', 'Elizabeth Warren', 'Michael Bloomberg', 'Pete Buttigieg', 'Amy Klobuchar',  'Tulsi Gabbard'})]
df.head()
df.shape
(2245, 4)

CountVectorizer et creation du dict des mots par candidat a utiliser sur les modeles ML qui seront en back-up###

Analyse Lexicale

cv = CountVectorizer(stop_words=stopwords)
df_cv = cv.fit_transform(df.speech)
df_words = pd.DataFrame(df_cv.toarray(), columns=cv.get_feature_names())
df_words.index = df.speaker
df_words = df_words.transpose()
df_words
speaker Bernie Sanders Michael Bloomberg Michael Bloomberg Bernie Sanders Pete Buttigieg Elizabeth Warren Elizabeth Warren Pete Buttigieg Joe Biden Bernie Sanders ... Amy Klobuchar Elizabeth Warren Amy Klobuchar Tulsi Gabbard Tulsi Gabbard Amy Klobuchar Amy Klobuchar Amy Klobuchar Elizabeth Warren Elizabeth Warren
00 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
000 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
001st 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
05 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100s 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
xinjiang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yachts 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yale 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yanked 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
ye 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yeah 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 1 0 0
year 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yearly 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
years 2 0 0 0 0 0 0 1 0 0 ... 0 0 0 0 0 0 0 0 1 0
yellow 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemen 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemin 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yep 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yes 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yesterday 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yet 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yo 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
york 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yorker 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
young 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
younger 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youngest 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youth 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youtube 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zealand 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zero 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zeroed 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zip 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zone 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

6385 rows × 2245 columns

top_dict = {}
for c in df_words.columns:
    top = df_words[c].sort_values(ascending=False).head(30)
    top_dict[c]= list(zip(top.index, top.values))
for speaker, top_words in top_dict.items():
    print(speaker)
    print(', '.join([word for word, count in top_words[0:9]]))
    print('---')
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)


   
     in 
    
     ()
      1 top_dict = {}
      2 for c in df_words.columns:
----> 3     top = df_words[c].sort_values(ascending=False).head(30)
      4     top_dict[c]= list(zip(top.index, top.values))
      5 for speaker, top_words in top_dict.items():


TypeError: sort_values() missing 1 required positional argument: 'by'

    
   
df2=pd.DataFrame(top_dict)
df2.head(15)
from collections import Counter
words = []
for speaker in df_words.columns:
    top = [word for (word, count) in top_dict[speaker]]
    for t in top:
        words.append(t)
Counter(words).most_common(15)
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)


   
     in 
    
     ()
      2 words = []
      3 for speaker in df_words.columns:
----> 4     top = [word for (word, count) in top_dict[speaker]]
      5     for t in top:
      6         words.append(t)


KeyError: 'Bernie Sanders'

    
   

Implemantation du modèle###

print(df.columns)
print(df.shape)
df['speaker'] = df['speaker'].astype(str)
Index(['speaker', 'speech', 'speech_tokens', 'speech_clean'], dtype='object')
(2245, 4)

Embedding

import gensim
RANDOM_STATE = 50
EPOCHS = 5
BATCH_SIZE = 256
EMB_DIM = 100
SAVE_MODEL = True

X = df['speech_clean']
print(X.head())
X.shape
5     [well, you�re, right, economy, really, great, ...
6                                            [senator-]
8     [think, donald, trump, thinks, would, better, ...
9     [oh, mr., bloomberg, ., let, tell, mr., putin,...
11     [know, president, russia, wants, it�s, chaos, .]
Name: speech_clean, dtype: object





(2245,)
emb_model = gensim.models.Word2Vec(sentences = X, size = EMB_DIM, window = 5, workers = 4, min_count = 1)
print('La taille du vocabulaire appris est de ',len(list(emb_model.wv.vocab)))
La taille du vocabulaire appris est de  7139
from keras.preprocessing.text import Tokenizer
import tokenize
max_length = max([len(s) for s in X])

tokenizer_new = Tokenizer()
tokenizer_new.fit_on_texts(X)

X_seq = tokenizer_new.texts_to_sequences(X)
X_fin = sequence.pad_sequences(X_seq, maxlen = max_length)
print(X_fin.shape)
(2245, 140)
emb_vec = emb_model.wv
MAX_NB_WORDS = len(list(emb_vec.vocab))
tokenizer_word_index = tokenizer_new.word_index
vocab_size = len(tokenizer_new.word_index) + 1
embedded_matrix = np.zeros((vocab_size, EMB_DIM))


for word, i in tokenizer_word_index.items():
    if i>= MAX_NB_WORDS:
        continue
    try:
        embedding_vector = emb_vec[word]
        wv_matrix[i] = embedding_vector
    except:
        pass      
embedded_matrix.shape
print(embedded_matrix)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

Préparation des variables

from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
y = df.speaker
print(y.head(10))
y.shape
5     1
6     4
8     4
9     1
11    5
12    2
13    2
15    5
21    3
23    1
Name: speaker, dtype: int32





(2245,)
Counter(y)
Counter({'Bernie Sanders': 430,
         'Michael Bloomberg': 97,
         'Pete Buttigieg': 392,
         'Elizabeth Warren': 440,
         'Joe Biden': 456,
         'Amy Klobuchar': 353,
         'Tulsi Gabbard': 77})
le=LabelEncoder()
df['speaker'] = le.fit_transform(df['speaker'])
df.head()

y = df.speaker
y.head()
print(y.shape)
print(X_fin.shape)
(2245,)
(2245, 140)
X_train, X_test, y_train, y_test = train_test_split(X_fin , y, test_size = 0.2, random_state = 42)


print(X_train.shape)
print(y_train.shape)
(1796, 140)
(1796,)

Construction des NN

model_pre_trained = Sequential()

model_pre_trained.add(Embedding(vocab_size, EMB_DIM, weights = [embedded_matrix], 
                    input_length = max_length, trainable = False))
model_pre_trained.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model_pre_trained.add(Dense(1, activation='softmax'))

model_pre_trained.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

model_pre_trained.summary()
Model: "sequential_11"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_11 (Embedding)     (None, 140, 100)          714000    
_________________________________________________________________
lstm_13 (LSTM)               (None, 128)               117248    
_________________________________________________________________
dense_9 (Dense)              (None, 1)                 129       
=================================================================
Total params: 831,377
Trainable params: 117,377
Non-trainable params: 714,000
_________________________________________________________________

Fitting

history_pre_trained = model_pre_trained.fit(X_fin, y, batch_size = BATCH_SIZE, epochs =20, verbose =1, validation_split = 0.2)
Train on 1796 samples, validate on 449 samples
Epoch 1/20
1796/1796 [==============================] - 4s 2ms/step - loss: 0.5429 - accuracy: 0.1754 - val_loss: -0.4417 - val_accuracy: 0.2472
Epoch 2/20
1796/1796 [==============================] - 3s 2ms/step - loss: -6.7429 - accuracy: 0.1776 - val_loss: -14.1017 - val_accuracy: 0.2472
Epoch 3/20
1796/1796 [==============================] - 3s 2ms/step - loss: -15.8550 - accuracy: 0.1776 - val_loss: -19.5441 - val_accuracy: 0.2472
Epoch 4/20
1796/1796 [==============================] - 3s 2ms/step - loss: -20.7949 - accuracy: 0.1776 - val_loss: -23.4335 - val_accuracy: 0.2472
Epoch 5/20
1796/1796 [==============================] - 3s 2ms/step - loss: -24.1430 - accuracy: 0.1776 - val_loss: -25.9735 - val_accuracy: 0.2472
Epoch 6/20
1796/1796 [==============================] - 3s 2ms/step - loss: -26.4535 - accuracy: 0.1776 - val_loss: -28.0725 - val_accuracy: 0.2472
Epoch 7/20
1796/1796 [==============================] - 3s 2ms/step - loss: -28.4266 - accuracy: 0.1776 - val_loss: -29.9313 - val_accuracy: 0.2472
Epoch 8/20
1796/1796 [==============================] - 3s 2ms/step - loss: -30.1754 - accuracy: 0.1776 - val_loss: -31.6261 - val_accuracy: 0.2472
Epoch 9/20
1796/1796 [==============================] - 3s 2ms/step - loss: -31.8791 - accuracy: 0.1776 - val_loss: -33.3337 - val_accuracy: 0.2472
Epoch 10/20
1796/1796 [==============================] - 4s 2ms/step - loss: -33.5166 - accuracy: 0.1776 - val_loss: -34.9834 - val_accuracy: 0.2472
Epoch 11/20
1796/1796 [==============================] - 3s 2ms/step - loss: -35.1544 - accuracy: 0.1776 - val_loss: -36.5973 - val_accuracy: 0.2472
Epoch 12/20
1796/1796 [==============================] - 3s 2ms/step - loss: -36.7253 - accuracy: 0.1776 - val_loss: -38.2070 - val_accuracy: 0.2472
Epoch 13/20
1796/1796 [==============================] - 3s 2ms/step - loss: -38.3344 - accuracy: 0.1776 - val_loss: -39.8655 - val_accuracy: 0.2472
Epoch 14/20
1796/1796 [==============================] - 3s 2ms/step - loss: -39.9810 - accuracy: 0.1776 - val_loss: -41.5162 - val_accuracy: 0.2472
Epoch 15/20
1796/1796 [==============================] - 3s 1ms/step - loss: -41.6567 - accuracy: 0.1776 - val_loss: -43.2049 - val_accuracy: 0.2472
Epoch 16/20
1796/1796 [==============================] - 3s 1ms/step - loss: -43.2579 - accuracy: 0.1776 - val_loss: -44.8235 - val_accuracy: 0.2472
Epoch 17/20
1796/1796 [==============================] - 3s 1ms/step - loss: -44.9030 - accuracy: 0.1776 - val_loss: -46.4982 - val_accuracy: 0.2472
Epoch 18/20
1796/1796 [==============================] - 2s 1ms/step - loss: -46.5038 - accuracy: 0.1776 - val_loss: -48.0627 - val_accuracy: 0.2472
Epoch 19/20
1796/1796 [==============================] - 3s 1ms/step - loss: -48.0124 - accuracy: 0.1776 - val_loss: -49.5424 - val_accuracy: 0.2472
Epoch 20/20
1796/1796 [==============================] - 2s 1ms/step - loss: -49.5209 - accuracy: 0.1776 - val_loss: -51.1489 - val_accuracy: 0.2472

Evaluation du modèle

score = model_pre_trained.evaluate(X_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: -51.148848297866785
Test accuracy: 0.18930958211421967

ptoblèmes: npmbre important de stopwords à rajouter au dictionnaire, doutes sur la fonction dactivation, stemming/lemmatization qui semble peu efficace; axes d'amélioration: explorer les N grammes pouir contextualiser les mots et creer u_n dictionnaire de stopwords customisé pour les deabts ( association d'idées)/


Owner
Pamela Dekas
Adepte de text mining, deep learning and data visualization
Pamela Dekas
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022